Question From Paper: A hot air balloon has an envelope which has height h = 30 m high (see below). The balloon is always operated with a temperature difference between the heated gas and the atmosphere of 100K. For simplicity, assume that the envelope contains heated air only (that is, ignore...
How would you go about solving the following problems regarding a syringe full of water?
First, find the magnitude of force required to be applied to a piston of an 85ml syringe with a 60mm diameter tube to drain the tube in 25 seconds through an outlet of 10mm diameter?
Second, what would the...
Hi community,
I have a question about the Bernoulli principle. From statistical mechanics the pressure in the ideal gas is independent of velocity.
But in the case of the flow of an ideal gas in a channel, the pressure depends on the velocity.
Where can I clarify this misunderstanding...
Homework Statement
Problem in attached image
Homework Equations
$$P_1+\frac{\rho v_1^2}{2}=P_2+\frac{\rho v_2^2}{2}$$
The Attempt at a Solution
I understand everything in the solution except why $$P_A-P_B=h(\rho_{Hg}-\rho)g$$ Why do we have to subtract the density of water from that of...
The more I learn about Bernoulli's the less I feel I understand it
The problem statement
If I had a ball (balloon) filled with fluid at pressure P being acted on by two opposing forces F+ and F-
F+ being larger than F- there would be a net force accelerating the ball to the right but the...
In nature, gradient is always required for flow; whether it is temperature gradient for heat transfer or pressure difference for fluid flow. There is a case of Venturimeter in which we have throat section. After throat there is a divergent section. How could flow even happen in that adverse...
Could someone explain the image we see below of a fully separated and stagnated flow over a wing
if we were to focus on where the flows rejoin on the trailing edge we see above a fully stagnated flow DP=0
The static pressure here in the boundary layer above where the flows rejoin should be...
Homework Statement
It is time for aged physics lecturers to have their flu shots but even that can be interesting. Assume the density of the vaccine in the syringe is the same as the density of water. The diameter of the syringe is 6mm, the length of the needle is 3cm and by reading the packet...
Hi all,
I am designing an artificial rain system and was thinking about using http://www.dannermfg.com/Store/Products/Danner/PID-02720.aspx to power it. The goal of the system is to deliver roughly 1 gallon of water per hour to each of the 8 exit points (I will measure this by using a bucket...
I am looking into hydrostatics, but am now very confused about what has to remain constant in an incompressible fluid. I initially thought that pressure has to be the same all throughout the fluid, and that this is the reason why you can use water or oil when raising a car- you apply a small...
Water flows in the horizontal pipe shown in Fig. 13-6. At A the area is and the speed of the water is At B the area is 16.0 cm2. The fluid in the manometer is mercury, which has a density of What is the manometer reading h?
My attempt:
I used A1V1 = A2V2 to find the speed at B which is 3.125...