-1.1.1c Solve for the following initial value

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Initial Value
Click For Summary

Discussion Overview

The discussion revolves around solving the initial value problem for the differential equation \(\frac{dy}{dt} = 2y - 10\) with the initial condition \(y(0) = y_0\). Participants explore various methods for solving this equation, including integrating factors and the method of characteristics, while examining the resulting expressions for \(y\).

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant rewrites the equation as \(y' - 2y = -10\) and uses an integrating factor to derive the solution, eventually questioning a sign error in the final expression.
  • Another participant presents a solution using separation of variables, leading to the expression \(y = 5 + (y_0 - 5)e^{2t}\) and notes that the book answer should have a positive exponent.
  • Multiple participants reiterate the separation of variables approach, arriving at the same expression and questioning the consistency of the signs in the solutions.
  • A later post introduces the method of characteristics, providing a different perspective on solving the equation and deriving the general solution as \(y = Ae^{2t} + 5\), while also suggesting the use of the initial condition to find the constant \(A\).

Areas of Agreement / Disagreement

Participants express disagreement regarding the signs in the final expressions for \(y\), with no consensus reached on the correct form. Multiple competing views on the solution methods and results remain present throughout the discussion.

Contextual Notes

Some participants highlight potential sign errors in their calculations, and there are unresolved questions about the consistency of the solutions derived from different methods.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$1.1.2c\\ \displaystyle \frac{dy}{dt}=2y-10, \qquad y(0)=y_0$
rewrite
$\quad\displaystyle y'-2y=-10$
obtain u(x)
$\quad\displaystyle u(t)=\exp\int -2 \, dt=e^{-2t}$
integrate using the boundaries:
$\quad\displaystyle \int_{y_0}^{e^{-2t}y}\,du=-10\int_{0}^{t}e^{-2v}\,dv$
resulting in
$\quad\displaystyle e^{-2t}y-y_0=-5\left(e^{-2t}-1\right)$
multiply thru by $e^{2t}$
$\quad\displaystyle y-y_0e^{2t}=5\left(1-e^{2t}\right)$
then
$\quad\displaystyle y=5\left(1-e^{2t}\right)+y_0e^{2t}$
then
$\quad\displaystyle y=5-5e^{2t}+y_0e^{2t}$
then
$\quad\displaystyle y=5-(y_0+5)e^{-2t}$
book answer
$\quad\displaystyle y=5+(y_0-5)e^{-2t}$ok seems to be a sign error someplace
 
Physics news on Phys.org
$\dfrac{dy}{dt} = 2(y-5)$

$\dfrac{dy}{y-5} = 2 \,dt$

$\ln|y-5| = 2t+ C$

$y(0) = y_0 \implies \ln|y_0-5| = C$

$\ln|y-5| = 2t+ \ln|y_0-5|$

$\ln \bigg| \dfrac{y-5}{y_0-5} \bigg| = 2t$

$\dfrac{y-5}{y_0-5} = e^{2t}$

$y-5 = (y_0-5)e^{2t}$

$y = 5 + (y_0-5)e^{2t}$

book answer should have a positive exponent ...
 
skeeter said:
$\dfrac{dy}{dt} = 2(y-5)$

$\dfrac{dy}{y-5} = 2 \,dt$

$\ln|y-5| = 2t+ C$

$y(0) = y_0 \implies \ln|y_0-5| = C$

$\ln|y-5| = 2t+ \ln|y_0-5|$

$\ln \bigg| \dfrac{y-5}{y_0-5} \bigg| = 2t$

$\dfrac{y-5}{y_0-5} = e^{2t}$

$y-5 = (y_0-5)e^{2t}$

$y = 5 + (y_0-5)e^{2t}$

book answer should have a positive exponent ...

oh this one?
View attachment 8707

so you did this without the $u(x)$ method!
 
$1.1.2c\\ \displaystyle \frac{dy}{dt}=2y-10, \qquad y(0)=y_0$
rewrite
$\quad\displaystyle y'-2y=-10$
obtain u(x)
$\quad\displaystyle u(t)=\exp\int -2 \, dt=e^{-2t}$
integrate using the boundaries:
$\quad\displaystyle \int_{y_0}^{e^{-2t}y}\,du=-10\int_{0}^{t}e^{-2v}\,dv$
resulting in
$\quad\displaystyle e^{-2t}y-y_0=-5\left(e^{-2t}-1\right)$
multiply thru by $e^{2t}$
$\quad\displaystyle y-y_0e^{2t}=-5\left(1-e^{2t}\right)$
then
$\quad\displaystyle y=-5\left(1-e^{2t}\right)+y_0e^{2t}$
then
$\quad\displaystyle y=-5+5e^{2t}+y_0e^{2t}$
then
$\quad\displaystyle y=5-(y_0+5)e^{2t}$
book answer
$\quad\displaystyle y=5+(y_0-5)e^{-2t}$still sign ?
 
using an integrating factor ...

$\dfrac{dy}{dt} = 2y-10$

$\dfrac{dy}{dt} - 2y = -10$

$\mu(t) = e^{-2t}$

$e^{-2t}\left(\dfrac{dy}{dt} - 2y\right) = -10e^{-2t}$

$\dfrac{d}{dt}\left(e^{-2t} \cdot y\right) = -10e^{-2t}$

integrate both sides ...

$e^{-2t} \cdot y = 5e^{-2t} + C$

$y(0) = y_0 \implies y_0 = 5 + C \implies C = y_0 - 5$

$e^{-2t} \cdot y = 5e^{-2t} + y_0 - 5$

multiply every term by $e^{2t}$ ...

$y = 5 + (y_0 - 5)e^{2t}$
 
karush said:
$1.1.2c\\ \displaystyle \frac{dy}{dt}=2y-10, \qquad y(0)=y_0$
rewrite
$\quad\displaystyle y'-2y=-10$
obtain u(x)
$\quad\displaystyle u(t)=\exp\int -2 \, dt=e^{-2t}$
integrate using the boundaries:
$\quad\displaystyle \int_{y_0}^{e^{-2t}y}\,du=-10\int_{0}^{t}e^{-2v}\,dv$
resulting in
$\quad\displaystyle e^{-2t}y-y_0=-5\left(e^{-2t}-1\right)$
multiply thru by $e^{2t}$
$\quad\displaystyle y-y_0e^{2t}=-5\left(1-e^{2t}\right)$
then
$\quad\displaystyle y=-5\left(1-e^{2t}\right)+y_0e^{2t}$
then
$\quad\displaystyle y=-5+5e^{2t}+y_0e^{2t}$
then
$\quad\displaystyle y=5-(y_0+5)e^{2t}$
book answer
$\quad\displaystyle y=5+(y_0-5)e^{-2t}$still sign ?
In my book [math]\dfrac{-10}{-2} = 5[/math].

Here's a higher brow method, used when we have a linear nth order equation. (It's kinda overkill in this situation.)

Method of Characteristics:
[math]y' - 2y = -10[/math]

Homogeneous equation:
[math]y' - 2y = 0[/math]

Thus [math]m - 2 = 0 \implies m = 2[/math]

So the homogeneous solution is [math]y = Ae^{2t}[/math]

For the particular solution we take y = B
[math]y' = 0[/math]

So
[math]y' - 2y = -10 \implies 0 - 2(B) = -10 \implies B = 5[/math]

Thus for the whole equation
[math]y = A e^{2t} + 5[/math]

(Then use [math]y(0) = y_0[/math] to find A.)

-Dan
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K