##1^x =2## has complex solutions?

  • Context: Undergrad 
  • Thread starter Thread starter Arjan82
  • Start date Start date
  • Tags Tags
    Complex algebra
Click For Summary
SUMMARY

The discussion centers on the equation ##1^x = 2## and its complex solutions, specifically the claim by 'Blackpenredpen' that solutions exist in the form of ##x = \frac{-i \ln(2)}{2\pi n}## for integers ##n \neq 0##. Participants debate the validity of this claim, noting that ##1^x## is not injective, leading to multiple solution branches. The mathematical derivation confirms that for specific values of ##n##, such as ##n=1##, the equation holds true, resulting in ##1^x = 2##. However, the discussion also highlights the undefined nature of ##1^x## when considering complex logarithms.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with logarithmic functions and their branches
  • Knowledge of exponentiation in the context of complex analysis
  • Basic grasp of mathematical proofs and derivations
NEXT STEPS
  • Study the properties of complex logarithms and their branches
  • Learn about the injectivity of functions in complex analysis
  • Explore the concept of analytic functions and their implications
  • Investigate the implications of defining exponentiation for complex numbers
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in the intricacies of complex exponentiation and logarithmic functions.

Arjan82
Messages
624
Reaction score
619
TL;DR
There's a Youtube video claiming ##1^x=2## has solutions ##x= \frac{-i \ln(2)}{2\pi n}## with ##n \in \mathbb{Z}## and ##n \neq 0##. Is this solid?
The Youtuber 'Blackpenredpen' claims that ##1^x=2## has solutions ##x= \frac{-i \ln(2)}{2\pi n}## with ##n \in \mathbb{Z}## and ##n \neq 0##. someone else in a forum claims that because ##1^x## is not injective there are more solution branches and this solution mixes these branches somehow. Who is right?

Also, 'Blackpenredpen' does not show that ##1^{ \frac{-i \ln(2)}{2\pi n}}## is indeed equal to 2. He kind of waved it away with 'something something infinite amount of solutions but one of them is 2'. Is this correct?

 
  • Skeptical
Likes   Reactions: renormalize
Physics news on Phys.org
Let's see.
##1=e^{2\pi i}##.
Take for example ##n=1, x=\frac{-i \ln(2)}{2\pi}##.
We get
##1^x=(e^{2\pi i})^{\frac{-i \ln(2)}{2\pi}}=e^{(2\pi i)(\frac{-i \ln(2)}{2\pi})}=e^{ln(2)}=2##.
Looks right.

(Sorry, I don't watch videos.)
 
  • Like
Likes   Reactions: SammyS
Last edited:
  • Like
Likes   Reactions: dextercioby
Logarithm has many solutions if you do not take the principal branch.

$$\log(1)=0, 2 \pi i, 4\pi i,....$$
and so on. This video plays on that
 
  • Like
Likes   Reactions: dextercioby
For ##n=2## I'd take ##1=e^{4 \pi i}##, etc.
I also
fresh_42 said:
want to know how ##1^x## is defined.
I remember the general definition, ##z^w=e^{w log(z)}##.
 
For those that did not watch the video, here it the derivation. Start with
$$1^x=2$$
Take the logarithm
$$\log(1^x)=\log2$$
Here is heavy lifting part:
$$x=\frac{\log2}{\log1}$$
Then wait that's dividing by zero unless:
$$x=\frac{\log2}{\log(e^{i(0+2\pi n)})}=\frac{-i \log2}{2 \pi n},\forall n\in\mathbb{Z}/0$$
 
  • Informative
Likes   Reactions: Hill
Let's see. I made the mistake of assuming that ##x## is real in my previous posts, sorry.

Say ##x=a+ib.##
\begin{align*}
1=e^{2\pi i}&\Longrightarrow 1^x=1^a \cdot 1^{ib}=e^{-2b\pi }=2\\
& \Longrightarrow b = n\cdot i -\dfrac{\log(2)}{2\pi}\;(n\in \mathbb{Z})
\end{align*}
##a## can obviously be any real number so ##x=a -\dfrac{\log(2)}{2\pi}\cdot i## if I didn't make a mistake again.
 
Well, within a branch logz of the log, which is a local inverse, ##z^w=e^{w logz}##. Branches are( can be seen as) vertical strips of width ##2\pi^{-}##, or ##[z_0, z_0+ 2\pi)##. Within any of these, the log is in bijection with ##\mathbb C-{0}##.

Then , within that branch:
##1^x=e^{x log(1)}=e^{xlog(ln|1|+iarg(1))}##. Then it all depends on what value of arg is assigned at ##z=1##. Which ,in this setup, would be within ##[ik2\pi, i(k+1)2\pi)##. We then just need an interval ##[iy, iy+2\pi)## containing the value ##iln2##

Or, within a slightly different setup, we use
##re^{i\theta}=r(cos(\theta)+isin(\theta))##
So it seems within a value of ##\theta=cos^{-1}(ln2)##.

Maybe you can argue that ##1^z:=e^{zln(1)}##, is Analytic and thus we can use the mean value to show it assumes the value ##2##.
 
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K