- #1
James1238765
- 120
- 8
- TL;DR Summary
- Why does this time evolution of the electromagnetic wavefunction diverges?
The Maxwell wavefunction of a photon is given in [here] as follows:
Because the curl operation mixes 3 different components, this wavefunction only works for a minimum of 3 space dimensions, with each grid point having 6 component numbers ##{E^1, E^2, E^3, B^1, B^2, B^3}##, and with the following update rules:
$$ E_{x,y,z}^1 = E_{x,y,z}^1 + B_{x,y+1,z}^3 - B_{x,y,z}^3 - B_{x,y,z+1}^2 + B_{x,y,z}^2$$
$$ E_{x,y,z}^2 = E_{x,y,z}^2 + B_{x,y,z+1}^1 - B_{x,y,z}^1 - B_{x+1,y,z}^3 + B_{x,y,z}^3$$
$$ E_{x,y,z}^3 = E_{x,y,z}^3 + B_{x+1,y,z}^2 - B_{x,y,z}^2 - B_{x,y+1,z}^1 + B_{x,y,z}^1$$
$$ B_{x,y,z}^1 = B_{x,y,z}^1 - E_{x,y+1,z}^3 + E_{x,y,z}^3 + E_{x,y,z+1}^2 - E_{x,y,z}^2$$
$$ B_{x,y,z}^2 = B_{x,y,z}^2 - E_{x,y,z+1}^1 + E_{x,y,z}^1 + E_{x+1,y,z}^3 - E_{x,y,z}^3$$
$$ B_{x,y,z}^3 = B_{x,y,z}^3 - E_{x+1,y,z}^2 + E_{x,y,z}^2 + E_{x,y+1,z}^1 - E_{x,y,z}^1$$
corresponding to ##\frac{dE}{dt} = \nabla x B## and ##\frac{dB}{dt} = - \nabla x E##
The complicated time evolution due to the mixing of the 6 components over time gives rise to complex behavior, which are not intuitive to predict.
1.
Setting E1 = 1 over all ##[x,y,z]## points in the 3 dimensional grid, and setting all other components E2, E3, B1, B2, B3 = 0 all over the grid, we obtain:
with no time evolution of any components throughout the grid.
2.
Setting E1 = ##sin (\frac{x}{width}2\pi) ## over all [x,y,z] points in the grid, and setting all other components to 0, we obtain:
still without time evolution.
3.
Setting Ei = ##sin (\frac{i}{width}2\pi) ## for all the 6 components:
still produces no time evolution! The curl operation is rather finicky.
4.
Setting E1 = ##sin (\frac{x+y+z}{width}2\pi) ## and ## E2, E3, E4, E5, E6 = 0 ## everywhere:
finally produces a time evolution.
However the time evolution explodes partway, as shown in the chart, and the numerical data below.
I am unsure why this happens, because the update rules involve only additions (with no multiplications or other fancy operations)?
Because the curl operation mixes 3 different components, this wavefunction only works for a minimum of 3 space dimensions, with each grid point having 6 component numbers ##{E^1, E^2, E^3, B^1, B^2, B^3}##, and with the following update rules:
$$ E_{x,y,z}^1 = E_{x,y,z}^1 + B_{x,y+1,z}^3 - B_{x,y,z}^3 - B_{x,y,z+1}^2 + B_{x,y,z}^2$$
$$ E_{x,y,z}^2 = E_{x,y,z}^2 + B_{x,y,z+1}^1 - B_{x,y,z}^1 - B_{x+1,y,z}^3 + B_{x,y,z}^3$$
$$ E_{x,y,z}^3 = E_{x,y,z}^3 + B_{x+1,y,z}^2 - B_{x,y,z}^2 - B_{x,y+1,z}^1 + B_{x,y,z}^1$$
$$ B_{x,y,z}^1 = B_{x,y,z}^1 - E_{x,y+1,z}^3 + E_{x,y,z}^3 + E_{x,y,z+1}^2 - E_{x,y,z}^2$$
$$ B_{x,y,z}^2 = B_{x,y,z}^2 - E_{x,y,z+1}^1 + E_{x,y,z}^1 + E_{x+1,y,z}^3 - E_{x,y,z}^3$$
$$ B_{x,y,z}^3 = B_{x,y,z}^3 - E_{x+1,y,z}^2 + E_{x,y,z}^2 + E_{x,y+1,z}^1 - E_{x,y,z}^1$$
corresponding to ##\frac{dE}{dt} = \nabla x B## and ##\frac{dB}{dt} = - \nabla x E##
The complicated time evolution due to the mixing of the 6 components over time gives rise to complex behavior, which are not intuitive to predict.
1.
Setting E1 = 1 over all ##[x,y,z]## points in the 3 dimensional grid, and setting all other components E2, E3, B1, B2, B3 = 0 all over the grid, we obtain:
with no time evolution of any components throughout the grid.
2.
Setting E1 = ##sin (\frac{x}{width}2\pi) ## over all [x,y,z] points in the grid, and setting all other components to 0, we obtain:
still without time evolution.
3.
Setting Ei = ##sin (\frac{i}{width}2\pi) ## for all the 6 components:
still produces no time evolution! The curl operation is rather finicky.
4.
Setting E1 = ##sin (\frac{x+y+z}{width}2\pi) ## and ## E2, E3, E4, E5, E6 = 0 ## everywhere:
finally produces a time evolution.
However the time evolution explodes partway, as shown in the chart, and the numerical data below.
I am unsure why this happens, because the update rules involve only additions (with no multiplications or other fancy operations)?
Last edited: