Homework: 13s: Critical Thinking Challenge

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the mathematical transformations represented by the functions S and T, specifically in the context of linear algebra. User Dan provides detailed calculations for the transformation S applied to a vector, resulting in new coordinates based on the defined operations. The conversation highlights the importance of understanding matrix dimensions and the legality of operations when adding matrices. Additionally, Dan clarifies the order of operations in composite transformations, emphasizing that S must be applied before T.

PREREQUISITES
  • Understanding of linear transformations in linear algebra
  • Familiarity with matrix operations and dimensions
  • Knowledge of composite functions and their application
  • Ability to perform matrix multiplication and addition
NEXT STEPS
  • Study linear transformations and their matrix representations
  • Explore the properties of matrix addition and multiplication
  • Learn about composite functions in the context of linear algebra
  • Practice solving problems involving transformations of vectors
USEFUL FOR

Students of mathematics, particularly those studying linear algebra, educators teaching matrix operations, and anyone interested in understanding vector transformations and their applications.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 8848

ok just sent this homework in (maybe typos} :cool:
on TS i think this is as far you can go with the current dimensions

critical thinking accepted...:cool:
 
Physics news on Phys.org
karush said:
ok just sent this homework in (maybe typos} :cool:
on TS i think this is as far you can go with the current dimensions

critical thinking accepted...:cool:
The first two are right, though I'm really not fond of your text trying to add a 2x1 matrix with a 3x1 in the second one. That's rather illegal, but not your problem.

As for [math]S^3[/math], take it step by step.
[math]S \left [ \begin{matrix} x \\ y \end{matrix} \right ] = \left [ \begin{matrix} x - 2y \\ 3x - y \end{matrix}\right ] [/math]

[math]S^2 \left [ \begin{matrix} x \\ y \end{matrix} \right ] = S \left ( S \left [ \begin{matrix} x \\ y \end{matrix} \right ] \right )[/math]

[math] = S \left [ \begin{matrix} x - 2y \\ 3x - y \end{matrix} \right ] = \left [ \begin{matrix} (x - 2y) - 2(3x - y) \\ 3(x - 2y) - (3x -y) \end{matrix} \right ] = \left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ] [/math]

Now you finish the rest.

-Dan
 
karush said:
$\displaystyle = S \left [ \begin{matrix} x - 2y \\ 3x - y \end{matrix} \right ] = \left [ \begin{matrix} (x - 2y) - 2(3x - y) \\ 3(x - 2y) - (3x -y) \end{matrix} \right ] = \left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]$so then kinda maybe
$S\left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]
=\left [ \begin{matrix} -5(x-2y) \\ -5(3x-y) \end{matrix} \right ]
=\left [ \begin{matrix} -5x-10y \\ -15x-5y \end{matrix} \right ]$
The transformation S takes a value [math]x \to x - 2y[/math] and [math]y \to 3x - y[/math], so your new x value will be (-5x) - 2(-5y) and your new y value will be 3(-5x) - (-5y).

-Dan
 
so you mean this
$S\left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]
=\left [ \begin{matrix} (-5x) - 2(-5y) \\ 3(-5x) - (-5y) \end{matrix} \right ]
=\left [ \begin{matrix} -5x-10y \\ -15x-5y \end{matrix} \right ]$
 
so for ST if
$S\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right], \quad
T\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x+y \\ x-y\\2x+3y \end{array}\right]$

then

$S\left(\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right]\right)
=\left[\begin{array}{c}(x-2y)+(3x-y) \\ (x-2y)-(3x-y)\\2(x-2y)+3(3x-y) \end{array}\right]$
if ok then simplify..
 
Last edited:
karush said:
so you mean this
$S\left [ \begin{matrix} -5x \\ -5y \end{matrix} \right ]
=\left [ \begin{matrix} (-5x) - 2(-5y) \\ 3(-5x) - (-5y) \end{matrix} \right ]
=\left [ \begin{matrix} -5x-10y \\ -15x-5y \end{matrix} \right ]$
Watch the double negatives!

-Dan

- - - Updated - - -

karush said:
so for ST if
$S\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right], \quad
T\left(\left[\begin{array}{c}x \\ y \end{array}\right]\right)
=\left[\begin{array}{c}x+y \\ x-y\\2x+3y \end{array}\right]$

then

$S\left(\left[\begin{array}{c}x-2y \\ 3x-y \end{array}\right]\right)
=\left[\begin{array}{c}(x-2y)+(3x-y) \\ (x-2y)-(3x-y)\\2(x-2y)+3(3x-y) \end{array}\right]$
if ok then simplify..
I think you mean
[math]T \left ( \left [ \begin{array}{c}x-2y \\ 3x-y \end{array} \right ] \right ) [/math]
in that last line. Otherwise, yes, good!

-Dan
 
A random thought. When you were doing the TS part you do realize you do S and then T, right?

-Dan
 
topsquark said:
A random thought. When you were doing the TS part you do realize you do S and then T, right?

-Dan
Yeah I thot it was a product
Not a composite
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
657
  • · Replies 3 ·
Replies
3
Views
1K