MHB 14.3 Find a basis for NS(A) and dim{NS(A)}

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Basis
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
For the matrix
$A=\left[\begin{array}{rrrrr}
1&0&0&4&5\\
0&1&0&3&2\\
0&0&1&3&2\\
0&0&0&0&0\end{array}\right]$
Find a basis for NS(A) and $\dim{NS(A)}$
$\left[\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{array}\right]=
\left[\begin{array}{c}
-4x_4-5x_5\\
-3x_4-2x_5\\
-3x_4-2x_5\\
x_4\\
x_5
\end{array}\right]$

ok I just did this but there is duplication in it
 
Physics news on Phys.org
"NS(A)" is the null space? If so then we are looking for \begin{bmatrix}x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} such that \begin{bmatrix}1 & 0 & 0 & 4 & 5 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}\begin{bmatrix}x_1 \\ x_2 \\ x_3 \\x_4 \\ x_5\end{bmatrix}= \begin{bmatrix}x_1+ 4x_4+ 5x_5 \\ x_2+ 3x_4+ 2x_5 \\ x_3+ 3x_4+ 2x_5 \\ 0 \end{bmatrix}= \begin{bmatrix}0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.

Although I wouldn't have written the equations this way they do give, as you say, x_1= -4x_4- 5x_5, x_2= -3x_4- 2x_5, x_3= -3x_4- 2x_5, and 0= 0. If by "duplication" you mean x_2= -3x_4- 2x_5 and x_3= -3x_4- 2x_5, that just means that x_2= x_3 Since all of x_1, x_2, and x_3 depend upon x_4 and x_5 take them as parameters (and the null space is two dimensional).

In particular, taking x_4= 1 and x_5= 0, x_1= -4. x_2= -3, and x_3= -3. One vector in the null space is \begin{bmatrix}-4 \\ -3 \\ -3 \\ 1 \\ 0 \end{bmatrix}. Taking x_4= 0 and x_5= 1, x_1= -5, x_2= -2, and x_3= -2. Another vector in the null space is \begin{bmatrix}-5 \\ -2 \\ -2 \\ 0 \\ 1\end{bmatrix}. Since the null space is two dimensional and the those vectors are independent, they form a basis for the null space.
 
$\left[ \begin{array}{c}
- 5x_4 - 4x_5 \\ - 2x_4 - 3x_5\\ - 2x_4 - 3x_5 \\x_4 \\x_5
\end{array} \right]
=\left[ \begin{array}{r} -4 \\-3 \\ -3 \\ 1 \\0
\end{array} \right]x_4
+\left[ \begin{array}{r} -5 \\ -2 \\ -2 \\ 0 \\ 1
\end{array} \right]x_5$
the basis for the null space is
$\left[ \begin{array}{r} -4 \\-3 \\ -3 \\ 1 \\0
\end{array} \right]
,\left[ \begin{array}{r} -5 \\ -2 \\ -2 \\ 0 \\ 1
\end{array} \right]$

kinda getin it
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
21
Views
1K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K