- #1
subzero0137
- 91
- 4
Find the general solution of the first order differential equation [itex](y+x^{2}y)\frac{dy}{dx}=3x+xy^{2}[/itex], with [itex]y(1)=1[/itex].
My attempt:
[tex]\frac{y}{3+y^{2}}dy=\frac{x}{1+x^{2}}dx ∴ \frac{1}{2}\int \frac{2y}{3+y^{2}}dy=\frac{1}{2}\int \frac{2x}{1+x^2}dx[/tex]
[tex]=\frac{1}{2}ln|3+y^{2}|=\frac{1}{2}ln|1+x^{2}|+C[/tex] ∴ [tex]y^{2}+3=x^{2}+1+e^{C}[/tex] ∴ [tex]y=\pm\sqrt{x^{2}-2+e^{C}}[/tex] Applying boundary conditions gives [tex]1=\pm\sqrt{1^{2}-2+e^{C}} \Rightarrow e^{C}=2[/tex] Therefore [tex]y=\pm x[/tex].
Is this right?
My attempt:
[tex]\frac{y}{3+y^{2}}dy=\frac{x}{1+x^{2}}dx ∴ \frac{1}{2}\int \frac{2y}{3+y^{2}}dy=\frac{1}{2}\int \frac{2x}{1+x^2}dx[/tex]
[tex]=\frac{1}{2}ln|3+y^{2}|=\frac{1}{2}ln|1+x^{2}|+C[/tex] ∴ [tex]y^{2}+3=x^{2}+1+e^{C}[/tex] ∴ [tex]y=\pm\sqrt{x^{2}-2+e^{C}}[/tex] Applying boundary conditions gives [tex]1=\pm\sqrt{1^{2}-2+e^{C}} \Rightarrow e^{C}=2[/tex] Therefore [tex]y=\pm x[/tex].
Is this right?