MHB 2.1.13 ok this isn't uv'+u'v

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ t^{-1}}$$
$\textit{multiply thru with $e^{ t^{-1}}$} $
$$ e^{ t^{-1}}y'- e^{ t^{-1}}y=2te^{t}$$
ok this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$
 
Last edited:
Physics news on Phys.org
The integrating factor is:

$$\mu(t)=\exp\left(-\int\,dt\right)=e^{-t}$$

Try that...:)
 
$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ -t}$$
$\textit{multiply thru with $e^{- t}$} $
$$ e^{-t}y'- e^{-t}y=2te^{t}$$
but still this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$
 
karush said:
$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ -t}$$
$\textit{multiply thru with $e^{- t}$} $
$$ e^{-t}y'- e^{-t}y=2te^{t}$$
but still this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$

Hi,

Notice that, $\frac{d}{dt}\left(e^{-t}y\right)=e^{-t}y'-ye^{-t}$. I hope you can continue with this hint. :)
 
Sudharaka said:
Hi,

Notice that, $\frac{d}{dt}\left(e^{-t}y\right)=e^{-t}y'-ye^{-t}$. I hope you can continue with this hint. :)

$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ t^{-1}}$$
$\textit{multiply thru with $e^{ t^{-1}}$} $
$$ e^{ t^{-1}}y'- e^{ t^{-1}}y=2te^{t}$$
$$(e^{-t}y)'=2te^{t}$$
$\textit{integrate}$
$$e^{-t}y=\int 2te^{t} \, dt =2e^t (t-1)+c_1$$
$\textit{Divide thru by $e^{-t}y$ and distribute}$
$$c _1e^t+2e^{2t}t-2e^{2t}$$
$$y(0)=c _1e^{(0)}+2e^{2(0)}t-2e^{2(0)}=1+2-2=1$$
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top