MHB 2.1.13 ok this isn't uv'+u'v

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ t^{-1}}$$
$\textit{multiply thru with $e^{ t^{-1}}$} $
$$ e^{ t^{-1}}y'- e^{ t^{-1}}y=2te^{t}$$
ok this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$
 
Last edited:
Physics news on Phys.org
The integrating factor is:

$$\mu(t)=\exp\left(-\int\,dt\right)=e^{-t}$$

Try that...:)
 
$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ -t}$$
$\textit{multiply thru with $e^{- t}$} $
$$ e^{-t}y'- e^{-t}y=2te^{t}$$
but still this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$
 
karush said:
$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ -t}$$
$\textit{multiply thru with $e^{- t}$} $
$$ e^{-t}y'- e^{-t}y=2te^{t}$$
but still this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$

Hi,

Notice that, $\frac{d}{dt}\left(e^{-t}y\right)=e^{-t}y'-ye^{-t}$. I hope you can continue with this hint. :)
 
Sudharaka said:
Hi,

Notice that, $\frac{d}{dt}\left(e^{-t}y\right)=e^{-t}y'-ye^{-t}$. I hope you can continue with this hint. :)

$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ t^{-1}}$$
$\textit{multiply thru with $e^{ t^{-1}}$} $
$$ e^{ t^{-1}}y'- e^{ t^{-1}}y=2te^{t}$$
$$(e^{-t}y)'=2te^{t}$$
$\textit{integrate}$
$$e^{-t}y=\int 2te^{t} \, dt =2e^t (t-1)+c_1$$
$\textit{Divide thru by $e^{-t}y$ and distribute}$
$$c _1e^t+2e^{2t}t-2e^{2t}$$
$$y(0)=c _1e^{(0)}+2e^{2(0)}t-2e^{2(0)}=1+2-2=1$$
 
Last edited:
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K