MHB -2.2.12 IVP y'=2x/(y+x^2y), y(0)=-2

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
Click For Summary
The discussion focuses on solving the initial value problem defined by the differential equation y' = 2x/(y + x^2y) with the initial condition y(0) = -2. The variables are separated, leading to the integration of both sides, resulting in the expression for y. The solution is confirmed as y = -[2ln(1 + x^2) + 4]^{-1/2}, with the interval of validity being all real numbers, -∞ < x < ∞. Participants also clarify the correct handling of the exponent in the solution, ensuring it aligns with the book's answer. The thread emphasizes the importance of checking signs and constants in differential equations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
693
2.2.13 (a) find initial value (b)plot and (c) interval

(a) find initial value (b)plot and (c) interval
$$\displaystyle
y^{\prime}=2x/(y+x^2y), \quad y(0)=-2$$
separate the variables
$$\frac{dy}{dx}=\frac{2x}{y+x^2y}=\frac{2x}{y(1-x^2)}$$
$$y\, dy =\frac{2x}{(1-x^2)}dx$$
integrate
$$\int y\, dy = -\sqrt{4}\int \frac{x}{(1-x^2)} \, dx$$
$$\frac{y^2}{2}= -2\frac{\ln(1 - x^2)}{2}$$
$$y=-\sqrt{4}\sqrt{\ln(1-x^2)}$$ok I am stuck again.,...book answer
$$(a)\, y = −[2 ln(1 + x^2) + 4]^{-1/2} \\ (c) −\infty < x <\infty$$
 
Last edited:
Physics news on Phys.org
$\dfrac{dy}{dx} = \dfrac{2x}{y(1+x^2)}$

$ y \, dy = \dfrac{2x}{1+x^2} \, dx$

$\dfrac{y^2}{2} = \ln(1+x^2) + C$

$y(0) = -2 \implies C = 2$ ...

$\dfrac{y^2}{2} = \ln(1+x^2) + 2$

$y = -\sqrt{2\ln(1+x^2) + 4} = -[2\ln(1+x^2)+4]^{1/2}$

... check the sign of the exponent on the book "answer"
 
skeeter said:
$\dfrac{dy}{dx} = \dfrac{2x}{y(1+x^2)}$

$ y \, dy = \dfrac{2x}{1+x^2} \, dx$

$\dfrac{y^2}{2} = \ln(1+x^2) + C$

$y(0) = -2 \implies C = 2$ ...

$\dfrac{y^2}{2} = \ln(1+x^2) + 2$

$y = -\sqrt{2\ln(1+x^2) + 4} = -[2\ln(1+x^2)+4]^{1/2}$

... check the sign of the exponent on the book "answer"
you are correct no negative exponent

- - - Updated - - -
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K