MHB 206.08.08.10 integral from --\infty

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\tiny{206.08.08.10 }

\begin{align*}
\displaystyle
I&= \int_{-\infty}^{0}\frac{dx}{(x+2)^{1/3}}\\
&=-\infty\\
\end{align*}

why does this go to $-\infty$
 
Physics news on Phys.org
What have you tried? The improper integral does evaluate to $-\infty$.
 
greg1313 said:
What have you tried? The improper integral does evaluate to $-\infty$.

my guess was just observation

how would $-\infty$ be plugged into the equation

and what would happen if the the upper limit would be greater than zero?

would the answer be the same no matter what the expression would be?
 
$$I = \lim_{a \to -\infty} \int_a^{-10} \dfrac{dx}{(x+2)^{1/3}} + \lim_{b \to -2^-} \int_{-10}^b \dfrac{dx}{(x+2)^{1/3}} + \lim_{c \to -2^+} \int_c^0 \dfrac{dx}{(x+2)^{1/3}}$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[(x+2)^{2/3}\bigg]_a^{-10} + \dfrac{3}{2} \lim_{b \to -2^-} \bigg[(x+2)^{2/3}\bigg]_{-10}^b + \dfrac{3}{2} \lim_{c \to -2^+} \bigg[(x+2)^{2/3}\bigg]_c^0
$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[4 - (a+2)^{2/3} \bigg] + \dfrac{3}{2} \lim_{b \to -2^-} \bigg[(b+2)^{2/3}-4 \bigg] + \dfrac{3}{2} \lim_{c \to -2^+} \bigg[2^{2/3} - (c+2)^{2/3} \bigg]$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[4 - (a+2)^{2/3} \bigg] + (-6) + \dfrac{3}{2^{1/3}}$$

... what happens with that first limit?
 
as larger negative values are input the eq goes to $-\infty$
 

Similar threads

Replies
4
Views
1K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
4
Views
1K
Replies
2
Views
1K
Back
Top