MHB 206.08.08.10 integral from --\infty

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral I = ∫_{-\infty}^{0} (dx/(x+2)^{1/3}) evaluates to -∞ due to the behavior of the integrand near x = -2, where it approaches a vertical asymptote. The discussion explores how the limits of integration affect the result, particularly when considering values approaching -2 from both sides. The improper integral's divergence to -∞ is confirmed through various limit evaluations. It is noted that if the upper limit were greater than zero, the behavior of the integral would change, but the divergence remains consistent for the given expression. The analysis concludes that as larger negative values are substituted, the integral continues to trend towards -∞.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\tiny{206.08.08.10 }

\begin{align*}
\displaystyle
I&= \int_{-\infty}^{0}\frac{dx}{(x+2)^{1/3}}\\
&=-\infty\\
\end{align*}

why does this go to $-\infty$
 
Physics news on Phys.org
What have you tried? The improper integral does evaluate to $-\infty$.
 
greg1313 said:
What have you tried? The improper integral does evaluate to $-\infty$.

my guess was just observation

how would $-\infty$ be plugged into the equation

and what would happen if the the upper limit would be greater than zero?

would the answer be the same no matter what the expression would be?
 
$$I = \lim_{a \to -\infty} \int_a^{-10} \dfrac{dx}{(x+2)^{1/3}} + \lim_{b \to -2^-} \int_{-10}^b \dfrac{dx}{(x+2)^{1/3}} + \lim_{c \to -2^+} \int_c^0 \dfrac{dx}{(x+2)^{1/3}}$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[(x+2)^{2/3}\bigg]_a^{-10} + \dfrac{3}{2} \lim_{b \to -2^-} \bigg[(x+2)^{2/3}\bigg]_{-10}^b + \dfrac{3}{2} \lim_{c \to -2^+} \bigg[(x+2)^{2/3}\bigg]_c^0
$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[4 - (a+2)^{2/3} \bigg] + \dfrac{3}{2} \lim_{b \to -2^-} \bigg[(b+2)^{2/3}-4 \bigg] + \dfrac{3}{2} \lim_{c \to -2^+} \bigg[2^{2/3} - (c+2)^{2/3} \bigg]$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[4 - (a+2)^{2/3} \bigg] + (-6) + \dfrac{3}{2^{1/3}}$$

... what happens with that first limit?
 
as larger negative values are input the eq goes to $-\infty$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K