206.08.08.10 integral from --\infty

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The improper integral \( I = \int_{-\infty}^{0} \frac{dx}{(x+2)^{1/3}} \) evaluates to \( -\infty \) due to the behavior of the function as \( x \) approaches \( -2 \) from the left. The analysis shows that as \( a \) approaches \( -\infty \), the term \( (a+2)^{2/3} \) diverges negatively, confirming that the integral diverges to \( -\infty \). The discussion also explores the implications of changing the upper limit and the continuity of the function across the specified range.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with limits and continuity in calculus
  • Knowledge of the properties of rational functions
  • Experience with evaluating integrals involving limits
NEXT STEPS
  • Study the evaluation of improper integrals in detail
  • Learn about the behavior of rational functions near their discontinuities
  • Explore the concept of limits in calculus, particularly one-sided limits
  • Investigate the applications of integrals in real-world scenarios
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators seeking to explain the behavior of improper integrals and limits in their teaching.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\tiny{206.08.08.10 }

\begin{align*}
\displaystyle
I&= \int_{-\infty}^{0}\frac{dx}{(x+2)^{1/3}}\\
&=-\infty\\
\end{align*}

why does this go to $-\infty$
 
Physics news on Phys.org
What have you tried? The improper integral does evaluate to $-\infty$.
 
greg1313 said:
What have you tried? The improper integral does evaluate to $-\infty$.

my guess was just observation

how would $-\infty$ be plugged into the equation

and what would happen if the the upper limit would be greater than zero?

would the answer be the same no matter what the expression would be?
 
$$I = \lim_{a \to -\infty} \int_a^{-10} \dfrac{dx}{(x+2)^{1/3}} + \lim_{b \to -2^-} \int_{-10}^b \dfrac{dx}{(x+2)^{1/3}} + \lim_{c \to -2^+} \int_c^0 \dfrac{dx}{(x+2)^{1/3}}$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[(x+2)^{2/3}\bigg]_a^{-10} + \dfrac{3}{2} \lim_{b \to -2^-} \bigg[(x+2)^{2/3}\bigg]_{-10}^b + \dfrac{3}{2} \lim_{c \to -2^+} \bigg[(x+2)^{2/3}\bigg]_c^0
$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[4 - (a+2)^{2/3} \bigg] + \dfrac{3}{2} \lim_{b \to -2^-} \bigg[(b+2)^{2/3}-4 \bigg] + \dfrac{3}{2} \lim_{c \to -2^+} \bigg[2^{2/3} - (c+2)^{2/3} \bigg]$$

$$I = \dfrac{3}{2} \lim_{a \to -\infty} \bigg[4 - (a+2)^{2/3} \bigg] + (-6) + \dfrac{3}{2^{1/3}}$$

... what happens with that first limit?
 
as larger negative values are input the eq goes to $-\infty$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K