206.10.3.17 Evaluate the following geometric sum

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Geometric Sum
Click For Summary
SUMMARY

The geometric sum evaluated in the discussion is represented as \( S_n = \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \cdots + \frac{1}{8192} \), which converges to \( S_n = \frac{2}{3} \). The transformation into the geometric series formula is achieved by recognizing the series as \( S = \sum_{n=1}^{\infty} \frac{1}{2^{2n-1}} \). The derivation involves manipulating the series into two parts and applying the geometric series sum formula, leading to the conclusion that \( a = \frac{1}{2} \) and \( r = \frac{1}{4} \).

PREREQUISITES
  • Understanding of geometric series and their convergence
  • Familiarity with the formula for the sum of an infinite geometric series
  • Basic knowledge of binary representation and decimal conversion
  • Ability to manipulate series and summations
NEXT STEPS
  • Study the derivation of the geometric series sum formula
  • Explore the properties of binary numbers and their decimal equivalents
  • Learn about convergence tests for infinite series
  • Investigate advanced techniques in series manipulation and transformation
USEFUL FOR

Mathematicians, students studying calculus or series, and anyone interested in the evaluation of geometric sums and their applications in mathematical analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.10.3.17}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$
☕
 
Physics news on Phys.org
karush said:
$\tiny{206.10.3.17}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$
☕

Notice that it can be written as

$\displaystyle \begin{align*} \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \cdots &= \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \dots \right) - \left( \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \dots \right) \\ &= \sum_{n = 1}^{\infty}{ \left( \frac{1}{2} \right) ^n } - \sum_{n = 1}^{\infty}{ \left( \frac{1}{4} \right) ^n } \\ &= \frac{\frac{1}{2}}{1 - \frac{1}{2}} - \frac{\frac{1}{4}}{1 - \frac{1}{4}} \\ &= \frac{\frac{1}{2}}{\frac{1}{2}} - \frac{\frac{1}{4}}{\frac{3}{4}} \\ &= 1 - \frac{1}{3} \\ &= \frac{2}{3} \end{align*}$
 
$\text{how is $\displaystyle a=\frac{1}{2}$ and $\displaystyle r=\frac{1}{2}$ derived from that?}$
 
$$S=\sum_{k=1}^{\infty}\left(\frac{1}{2^{2n-1}}\right)=\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{2^{2n-2}}\right)=\frac{1}{2}\sum_{k=1}^{\infty}\left(\left(\frac{1}{4}\right)^{n-1}\right)=\frac{1}{2}\cdot\frac{1}{1-\dfrac{1}{4}}=\frac{1}{2}\cdot\frac{4}{3}=\frac{2}{3}$$
 
Another way to evaluate this series is to observe that, in binary, it is the repeating decimal:

$$S=0.\overline{10}=\frac{10}{11}$$

Converting to decimal, this becomes:

$$S=\frac{2}{3}$$
 
$$S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$

The right hand side should be as a function of $n$.
 
karush said:
$\tiny{206.10.3.17}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$
☕

$$\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=2\sum_{n=1}^{\infty}\frac{1}{2^{2n}}=2\sum_{n=1}^{\infty}\frac{1}{4^n}=2\left(\frac{\frac14}{1-\frac14}\right)=\frac23$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K