206.10.3.17 Evaluate the following geometric sum

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Geometric Sum
Click For Summary

Discussion Overview

The discussion revolves around evaluating a geometric sum represented by the series $$S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}.$$ Participants explore various methods to derive the sum and question the derivation of parameters related to the geometric series.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents the sum as a geometric series and claims it equals $\frac{2}{3}$, asking how it relates to the geometric formula.
  • Another participant breaks down the series into two parts, demonstrating how to derive the sum using the formula for geometric series.
  • A question is raised regarding the derivation of the first term $a=\frac{1}{2}$ and the common ratio $r=\frac{1}{2}$ from the series.
  • One participant proposes an alternative evaluation method by interpreting the series as a repeating binary decimal, leading to the same result of $\frac{2}{3}$.
  • A later post suggests that the right-hand side of the series should be expressed as a function of $n$.
  • Another participant reiterates the evaluation of the series using a different approach, confirming the sum as $\frac{2}{3}$.

Areas of Agreement / Disagreement

There is no consensus on the derivation of the parameters $a$ and $r$, and multiple methods for evaluating the series are presented, indicating a lack of agreement on a single approach.

Contextual Notes

Participants express uncertainty about the derivation steps and the representation of the series, indicating that some assumptions may not be fully articulated.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.10.3.17}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$
☕
 
Physics news on Phys.org
karush said:
$\tiny{206.10.3.17}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$
☕

Notice that it can be written as

$\displaystyle \begin{align*} \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \cdots &= \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \dots \right) - \left( \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \dots \right) \\ &= \sum_{n = 1}^{\infty}{ \left( \frac{1}{2} \right) ^n } - \sum_{n = 1}^{\infty}{ \left( \frac{1}{4} \right) ^n } \\ &= \frac{\frac{1}{2}}{1 - \frac{1}{2}} - \frac{\frac{1}{4}}{1 - \frac{1}{4}} \\ &= \frac{\frac{1}{2}}{\frac{1}{2}} - \frac{\frac{1}{4}}{\frac{3}{4}} \\ &= 1 - \frac{1}{3} \\ &= \frac{2}{3} \end{align*}$
 
$\text{how is $\displaystyle a=\frac{1}{2}$ and $\displaystyle r=\frac{1}{2}$ derived from that?}$
 
$$S=\sum_{k=1}^{\infty}\left(\frac{1}{2^{2n-1}}\right)=\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{2^{2n-2}}\right)=\frac{1}{2}\sum_{k=1}^{\infty}\left(\left(\frac{1}{4}\right)^{n-1}\right)=\frac{1}{2}\cdot\frac{1}{1-\dfrac{1}{4}}=\frac{1}{2}\cdot\frac{4}{3}=\frac{2}{3}$$
 
Another way to evaluate this series is to observe that, in binary, it is the repeating decimal:

$$S=0.\overline{10}=\frac{10}{11}$$

Converting to decimal, this becomes:

$$S=\frac{2}{3}$$
 
$$S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$

The right hand side should be as a function of $n$.
 
karush said:
$\tiny{206.10.3.17}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$
☕

$$\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=2\sum_{n=1}^{\infty}\frac{1}{2^{2n}}=2\sum_{n=1}^{\infty}\frac{1}{4^n}=2\left(\frac{\frac14}{1-\frac14}\right)=\frac23$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K