MHB 206.8.7.58 Int 1/(x^2-6x+34) dx complete the square

Click For Summary
The integral I_{58} evaluates to I_{58} = (1/5) arctan((x-3)/5) + C after completing the square for the quadratic expression in the denominator. The expression x^2 - 6x + 34 is rewritten as (x-3)^2 + 5^2, allowing the use of the standard integral formula for arctan. There is a discussion about the appropriateness of using standard integrals versus trigonometric substitution, with a specific inquiry into why ln(u^2 + a^2) is not the correct form for the integral. The thread highlights a common misunderstanding regarding the derivatives of logarithmic functions in relation to integrals. The final evaluation confirms the correctness of the arctan result through back substitution.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x-3\right)^2 + 5^2 = {u}^{2}+{a}^{2} \\
u=x-3 \\ a=5$$
$\text{standard integral} $
$$\displaystyle
I_{17}=\int \frac{du}{{a}^{2}+{u}^{2}}
=\frac{1}{a}
\arctan{\frac{u}{a}}
+C$$
$\text{back substitute } u=x-3 \ \ a=5 $

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x-3}{5}}
+C $$
My question on this is when is standard intregral used
this could of gone on with a trig subst.
Also why isn't $\ln\left({u^2+a^2}\right)+C$
correct
 
Last edited:
Physics news on Phys.org
That standard integral was derived using a trig. substitution.

What is $$\frac{d}{du}\left(\ln\left(u^2+a^2\right)+C\right)$$?
 
Didn't understand the $\ln$. question?
 
karush said:
Didn't understand the $\ln$. question?

Given that:

$$\frac{d}{du}\left(\int f(u)\,du\right)=f(u)$$

Then, if we posit:

$$\int \frac{1}{u^2+a^2}\,du=\ln\left(u^2+a^2\right)+C$$

We should be able to verify by checking to see if:

$$\frac{d}{du}\left(\ln\left(u^2+a^2\right)+C\right)=\frac{1}{u^2+a^2}$$

If not, then we know that anti-derivative is wrong. :)
 
karush said:
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x+3\right)^2 + 5^2 = {u}^{2}+{a}^{2} $$
You have a mistake in this first line- it should be $(x- 3)^2+ 5^2$, not x+ 3.

$$u=x+3 \\ a=5$$
$\text{standard integral} $
$$\displaystyle
I_{17}=\int \frac{du}{{a}^{2}+{u}^{2}}
=\frac{1}{a}
\arctan{\frac{u}{a}}
+C$$
$\text{back substitute } u=x+3 \ \ a=5 $

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x+3}{5}}
+C $$
My question on this is when is standard intregral used
this could of gone on with a trig subst.
Also why isn't $\ln\left({u^2+a^2}\right)+C$
correct
 
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x-3\right)^2 + 5^2 = {u}^{2}+{a}^{2} \\
u=x-3 \\ a=5$$
$\text{standard integral} $
$$\displaystyle
I_{17}=\int \frac{du}{{a}^{2}+{u}^{2}}
=\frac{1}{a}
\arctan{\frac{u}{a}}
+C$$
$\text{back substitute } u=x-3 \ \ a=5 $

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x-3}{5}}
+C $$

$\text{fixed } u=x-3 $
 
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x-3\right)^2 + 25$$
$\text{u substitution} $
$$u=5\tan\left({\theta}\right)
\therefore du=5\sec^2\left(\theta\right) \, d\theta
\therefore \theta =\arctan\left[\frac{u}{5}\right]$$
$\text{then..}$
$$I_{58}=.
\int\frac{5\sec^2\theta}{25\sec^2\theta+25 } \, d\theta
=\frac{1}{5}\int 1 \,d\theta=\frac{1}{5}\theta$$

$\text{back substitute }
u=x-3 \ \ \theta = \arctan\left[\frac{u}{5}\right]$

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x-3}{5}}
+C $$
 

Similar threads

Replies
7
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
6
Views
3K
Replies
4
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K