206.8.7.58 Int 1/(x^2-6x+34) dx complete the square

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Complete Dx Square
Click For Summary
SUMMARY

The integral $$I_{58}=\int \frac{dx}{{x}^{2}-6x+34}$$ is evaluated using the method of completing the square, resulting in the expression $$I_{58}=\frac{1}{5} \arctan\left(\frac{x-3}{5}\right) + C$$. The quadratic expression is rewritten as $$(x-3)^2 + 5^2$$, allowing the application of the standard integral formula $$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C$$. The discussion also addresses the incorrect application of the logarithmic integral $$\ln(u^2 + a^2) + C$$, clarifying that its derivative does not yield the original integrand.

PREREQUISITES
  • Understanding of integral calculus, specifically techniques for evaluating integrals.
  • Familiarity with completing the square in quadratic expressions.
  • Knowledge of trigonometric integrals and their standard forms.
  • Ability to differentiate logarithmic functions and their properties.
NEXT STEPS
  • Study the method of completing the square in greater detail.
  • Learn about the derivation and application of trigonometric integrals.
  • Explore the properties of logarithmic functions and their derivatives.
  • Investigate alternative methods for evaluating integrals, such as trigonometric substitution.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral evaluation, and mathematical analysis. This discussion is beneficial for anyone looking to deepen their understanding of integration techniques and their applications.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x-3\right)^2 + 5^2 = {u}^{2}+{a}^{2} \\
u=x-3 \\ a=5$$
$\text{standard integral} $
$$\displaystyle
I_{17}=\int \frac{du}{{a}^{2}+{u}^{2}}
=\frac{1}{a}
\arctan{\frac{u}{a}}
+C$$
$\text{back substitute } u=x-3 \ \ a=5 $

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x-3}{5}}
+C $$
My question on this is when is standard intregral used
this could of gone on with a trig subst.
Also why isn't $\ln\left({u^2+a^2}\right)+C$
correct
 
Last edited:
Physics news on Phys.org
That standard integral was derived using a trig. substitution.

What is $$\frac{d}{du}\left(\ln\left(u^2+a^2\right)+C\right)$$?
 
Didn't understand the $\ln$. question?
 
karush said:
Didn't understand the $\ln$. question?

Given that:

$$\frac{d}{du}\left(\int f(u)\,du\right)=f(u)$$

Then, if we posit:

$$\int \frac{1}{u^2+a^2}\,du=\ln\left(u^2+a^2\right)+C$$

We should be able to verify by checking to see if:

$$\frac{d}{du}\left(\ln\left(u^2+a^2\right)+C\right)=\frac{1}{u^2+a^2}$$

If not, then we know that anti-derivative is wrong. :)
 
karush said:
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x+3\right)^2 + 5^2 = {u}^{2}+{a}^{2} $$
You have a mistake in this first line- it should be $(x- 3)^2+ 5^2$, not x+ 3.

$$u=x+3 \\ a=5$$
$\text{standard integral} $
$$\displaystyle
I_{17}=\int \frac{du}{{a}^{2}+{u}^{2}}
=\frac{1}{a}
\arctan{\frac{u}{a}}
+C$$
$\text{back substitute } u=x+3 \ \ a=5 $

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x+3}{5}}
+C $$
My question on this is when is standard intregral used
this could of gone on with a trig subst.
Also why isn't $\ln\left({u^2+a^2}\right)+C$
correct
 
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x-3\right)^2 + 5^2 = {u}^{2}+{a}^{2} \\
u=x-3 \\ a=5$$
$\text{standard integral} $
$$\displaystyle
I_{17}=\int \frac{du}{{a}^{2}+{u}^{2}}
=\frac{1}{a}
\arctan{\frac{u}{a}}
+C$$
$\text{back substitute } u=x-3 \ \ a=5 $

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x-3}{5}}
+C $$

$\text{fixed } u=x-3 $
 
$\text{206.8.7.58}$
$\text{given and evaluation}$
$$\displaystyle
I_{58}=\int \frac{dx}{{x}^{2}-6x+34}
=\dfrac{\arctan\left(\frac{x-3}{5}\right)}{5}
+ C$$
$\text{complete the square} $
$${x}^{2}-6x+34 = \left(x-3\right)^2 + 25$$
$\text{u substitution} $
$$u=5\tan\left({\theta}\right)
\therefore du=5\sec^2\left(\theta\right) \, d\theta
\therefore \theta =\arctan\left[\frac{u}{5}\right]$$
$\text{then..}$
$$I_{58}=.
\int\frac{5\sec^2\theta}{25\sec^2\theta+25 } \, d\theta
=\frac{1}{5}\int 1 \,d\theta=\frac{1}{5}\theta$$

$\text{back substitute }
u=x-3 \ \ \theta = \arctan\left[\frac{u}{5}\right]$

$$\displaystyle
I_{58}=\frac{1}{5}
\arctan{\frac{x-3}{5}}
+C $$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K