242t.08.02.09 int of rational expression.

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expression Rational
Click For Summary
SUMMARY

The integral of the rational expression $\int_5^{10} \frac{3x^5}{x^3-5} \, dx$ evaluates to 885.576. The substitution method using $u = x^3 - 5$ simplifies the integral, transforming it into $\int_{120}^{995} \left(1 + \frac{5}{u}\right) \, du$. This approach reduces the complexity of logarithmic calculations, yielding the same result with improved accuracy. The final evaluation confirms the correctness of the answer through a streamlined process.

PREREQUISITES
  • Understanding of definite integrals
  • Proficiency in substitution methods in calculus
  • Familiarity with logarithmic functions
  • Knowledge of evaluating integrals with variable limits
NEXT STEPS
  • Study advanced integration techniques, focusing on substitution methods
  • Learn about the properties of logarithmic functions in calculus
  • Explore numerical integration methods for approximating definite integrals
  • Investigate the application of integrals in real-world problems
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integral calculus, and anyone seeking to enhance their skills in evaluating rational expressions and integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242t.08.02.09}$
$\textsf{ Evaluate to nearest thousandth}\\$
\begin{align*}
\displaystyle
I_{8.1.31}
&=\int_5^{10}
\frac{3x^5}{x^3-5} \, dx =885.576\\
\end{align*}
$\textit{ok tried getting to this answer by: }$
$u=x^3-5 \therefore du=3x^2 \, dx$
$\textit{but it didnt seem to go to good}$
 
Physics news on Phys.org
karush said:
$\tiny{242t.08.02.09}$
$\textsf{ Evaluate to nearest thousandth}\\$
\begin{align*}
\displaystyle
I_{8.1.31}
&=\int_5^{10}
\frac{3x^5}{x^3-5} \, dx =885.576\\
\end{align*}
$\textit{ok tried getting to this answer by: }$
$u=x^3-5 \therefore du=3x^2 \, dx$
$\textit{but it didnt seem to go to good}$

$\displaystyle \begin{align*} \int_5^{10}{ \frac{3\,x^5}{x^3 - 5}\,\mathrm{d}x } &= \int_5^{10}{ \frac{x^3}{x^3 - 5}\,3\,x^2\,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = x^3 - 5 \implies \mathrm{d}u = 3\,x^2\,\mathrm{d}x \end{align*}$ and note that $\displaystyle \begin{align*} u(5) = 120 \end{align*}$ and $\displaystyle \begin{align*} u(10) = 995 \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_5^{10}{ \frac{x^3}{x^3 - 5}\,3\,x^2\,\mathrm{d}x } &= \int_{120}^{995}{ \frac{u + 5}{u}\,\mathrm{d}u } \\ &= \int_{120}^{995}{ \left( 1 + \frac{5}{u}\right) \,\mathrm{d}u } \end{align*}$

Continue.
 
$\tiny{242t.08.02.09}$
$\textsf{ Evaluate to nearest thousandth}\\$
\begin{align*}\displaystyle
I_{8.1.31}&=\int_5^{10}
\frac{3x^5}{x^3-5} \, dx \\
\end{align*}
$u=x^3-5 \therefore du=3x^2 \, dx$
\begin{align*}\displaystyle
I_{8.1.31}&= \int_{120}^{995}{ \frac{u + 5}{u}\,du } \\
&=\left[u+5\ln\left({\left| u \right|}\right)\right]^{995}_{120}\\
&=\left[1029.514-143.938\right] \\
&=885.576
\end{align*}
$\textit{basically}$
 
While there's technically nothing wrong with what you did, I would evaluate as follows:

$$I=\int_{120}^{995} 1+\frac{5}{u}\,du=(995-120)+5\ln\left(\frac{995}{120}\right)=5\left(175+\ln\left(\frac{199}{24}\right)\right)\approx885.576$$

This way, you only have one log to evaluate, and the rounding is done one time.
 
thanks love the tips...
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K