MHB 242t.08.02.41 Find the area of the region bounded by

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Area Bounded
Click For Summary
The area of the region bounded by the curves y=8cos(x) and y=4sec(x) from x=-π/4 to x=π/4 is correctly set up as the integral I41. The integrand can be simplified using symmetry, leading to the expression I=8∫[0, π/4](2cos(x) - sec(x))dx. The integration results in a combination of sine and logarithmic functions evaluated at the limits. A clarification was made regarding the integral of sec(x), emphasizing that it should be ln|sec(x) + tan(x)| instead of ln|cos(x)|. The discussion confirms the setup and integration steps for finding the area.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242t.08.02.41}$
$\textsf{Find the area of the region bounded above by}$
$\textsf{$y=8\cos{x}$ and below by $4\sec{x}$}$
$\textsf{and the limits are $-\frac{\pi}{4}\le x \le \frac{\pi}{4}$}$
\begin{align*} \displaystyle
I_{41}&=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (8\cos{x}-4\sec{x})\,dx
\end{align*}
$\textit{just want to see if this is set up right before step on the gas pedal}$:cool:
 
Physics news on Phys.org
karush said:
$\tiny{242t.08.02.41}$
$\textsf{Find the area of the region bounded above by}$
$\textsf{$y=8\cos{x}$ and below by $4\sec{x}$}$
$\textsf{and the limits are $-\frac{\pi}{4}\le x \le \frac{\pi}{4}$}$
\begin{align*}
I_{41}&=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (8\cos{x}-4\sec{x})\,dx
\end{align*}
$\textit{just want to see if this is set up right before step on the gas pedal}$:cool:

Yes, you have set this up correctly, however, I would take advantage of the symmetry of the integrand (even function) and write:

$$I=8\int_0^{\frac{\pi}{4}} 2\cos(x)-\sec(x)\,dx$$
 
$\tiny{242t.08.01.41}$
\begin{align*} \displaystyle
I_{41}&=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (8\cos{x}-4\sec{x})\,dx\\
&=8\int_0^{\frac{\pi}{4}} 2\cos(x)-\sec(x)\,dx \\
&=16\int_0^{\frac{\pi}{4}} \cos(x) \,dx -8\int_0^{\frac{\pi}{4}} \sec(x)\,dx \\
&=\left[16\sin{x} -8 \ln{\cos{x}}\right]_{0}^{\frac{\pi} {4}}
\end{align*}

ok?
 
karush said:
$\tiny{242t.08.01.41}$
\begin{align*} \displaystyle
I_{41}&=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (8\cos{x}-4\sec{x})\,dx\\
&=8\int_0^{\frac{\pi}{4}} 2\cos(x)-\sec(x)\,dx \\
&=16\int_0^{\frac{\pi}{4}} \cos(x) \,dx -8\int_0^{\frac{\pi}{4}} \sec(x)\,dx \\
&=\left[16\sin{x} -8 \ln{\cos{x}}\right]_{0}^{\frac{\pi} {4}}
\end{align*}

ok?

I do agree that:

$$\int \cos(x)\,dx=\sin(x)+C$$ since $$\frac{d}{dx}\left(\sin(x)+C\right)=\cos(x)$$

But, you stated:

$$\int \sec(x)\,dx=\ln|\cos(x)|+C$$ and $$\frac{d}{dx}\left(\ln|\cos(x)|+C\right)=\frac{-\sin(x)}{\cos(x)}=-\tan(x)\ne\sec(x)$$

What you want is:

$$\int \sec(x)\,dx=\ln|\sec(x)+\tan(x)|+C$$ since $$\frac{d}{dx}\left(\ln|\sec(x)+\tan(x)|+C\right)=\frac{\sec(x)\tan(x)+\sec^2(x)}{\sec(x)+\tan(x)}=\sec(x)$$ :D
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K