243.12.5.27 - Verify vector identiy

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary
SUMMARY

The discussion revolves around verifying the vector identity related to points A (1,2,3) and O (0,0,0) in three-dimensional space. Participants derive the equation of a sphere from the expression involving the dot product of vectors AP, OP, and OA. The final equation is shown to be $(x-1)^2 + (y-2)^2 + (z-3)^2 = 2$, indicating a sphere centered at (1,2,3) with a radius of $\sqrt{2}$. The conversation also explores generalizing the problem for arbitrary points O and A.

PREREQUISITES
  • Understanding of vector operations, specifically dot products.
  • Familiarity with the concept of vector magnitude.
  • Knowledge of the standard equation of a sphere in three-dimensional space.
  • Ability to complete the square for quadratic equations.
NEXT STEPS
  • Study vector operations in depth, focusing on dot products and magnitudes.
  • Learn how to derive the equation of a sphere from general point coordinates.
  • Explore the geometric interpretation of vectors and their relationships in three-dimensional space.
  • Practice completing the square in various quadratic equations to solidify understanding.
USEFUL FOR

Mathematics students, educators, and professionals in fields requiring geometric analysis, such as physics and engineering, will benefit from this discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Write a complete solution.}\\$
$\textit{ok Let A be the point (1,2,3) and O the origin (0, 0, 0). }\\$
$\textit{Consider the points P (x, y, z) such that AP · OP − OA · OP = 2 − |OA|2.}\\$
$\textit{Show that the set of all such points is a sphere, and find its center and radius.}\\$

ok, will be dealing with this in the morning
but would like some suggestions?
 
Physics news on Phys.org
Re: 243.12.5.27

I would begin by expressing the given directed line segments in component form:

$$\vec{AP}=\left\langle x-1,y-2,z-3 \right\rangle$$

$$\vec{OP}=\left\langle x,y,z \right\rangle$$

$$\vec{OA}=\left\langle 1,2,3 \right\rangle$$

And then:

$$\left|\vec{OA}\right|=\sqrt{1^2+2^2+3^2}=\sqrt{14}$$

Now, consider the definition of the dot product:

$$\text{a}\cdot\text{b}=\sum_{k=1}^n\left(a_kb_k\right)$$

Can you proceed?
 
Re: 243.12.5.27

Are you certain the given equation isn't:

$$\vec{AP}\cdot\vec{OP}-\vec{OA}\cdot\vec{OP}=2-\left|\vec{OA}\right|^2$$ ?

On a side note, can you generalize such that $O$ and $A$ are arbitrary distinct points in the space?
 
Re: 243.12.5.27

View attachment 7333

$\textsf{the dot product $u\cdot v$ of vectors $u=\langle u_1, u_2, u_3 \rangle$}$
$\textsf{and $v=\langle u_1, u_2, u_3 \rangle$ is}$
$$u\cdot v=u_1v_1+u_2v_2+u_3v_3$$
 

Attachments

  • 243.12.5.27.PNG
    243.12.5.27.PNG
    8.1 KB · Views: 161
Re: 243.12.5.27

I suspected that vector magnitude was to be squared...makes for a nicer problem. ;)
 
Re: 243.12.5.27

$\displaystyle \vec{AP}\cdot\vec{OP}-\vec{OA}\cdot\vec{OP}=2-\left|\vec{OA}\right|^2$
so since
$\displaystyle \vec{AP}=\left\langle x-1,y-2,z-3 \right\rangle$
$\displaystyle \vec{OP}=\left\langle x,y,z \right\rangle$
$\displaystyle \vec{OA}=\left\langle 1,2,3 \right\rangle$
then
\begin{align}
&\, \, \, \, \, \, \left\langle x-1,y-2,z-3 \right\rangle \cdot \left\langle x,y,z \right\rangle
-\left\langle 1,2,3 \right\rangle \cdot \left\langle x,y,z \right\rangle\\
&=[(x-1)x+(y-1)y+(z-3)z]-[x+2y+3z]\\
&=x^2-x+y^2-y+z^2-3z-x-2y-3z\\
&1^2-1+2^2-2+3^2-3(3)-1-2(2)-3(3)=\color{red}{ -12}
\end{align}
and also
\begin{align}
2-\left|\vec{OA}\right|^2=2-14=\color{red}{ -12}
\end{align}
the standard equation of a sphere is
$(x - h)^2 + (y - j)^2 + (z - k)^2 = r^2$
$\textbf{so |OP|^2=14=radius}$
$\textit{not sure about the radius??}$
 
Last edited:
Re: 243.12.5.27

Let's look at where you should have:

$$x^2-2x+y^2-4y+z^2-6z=-12$$

Hint: Try completing the square on $x,\,y,\,z$. To better appreciate this problem, I do recommend exploring the more general problem I spoke of in post #3.
 
Re: 243.12.5.27

MarkFL said:
Let's look at where you should have:

$$x^2-2x+y^2-4y+z^2-6z=-12$$

Hint: Try completing the square on $x,\,y,\,z$. To better appreciate this problem, I do recommend exploring the more general problem I spoke of in post #3.
\begin{align*}\displaystyle
&x^2-2x+y^2-4y+z^2-6z=-12\\
&x^2-2x+1+y^2-4y+4+z^2-6z×9\\
&=-12+1+4+9=2\\
&(x-1)^2+(y-2)^2+(z-3)^2\\
&=2\\
&=(\sqrt{2})^2
\end{align*}

radius=2
 
Last edited:
Re: 243.12.5.27

karush said:
\begin{align*}\displaystyle
x^2-2x+y^2-4y+z^2-6z&=-12\\
x^2-2x+1+y^2-4y+4+z^2-6z×9&=-12+1+4+9=2\\
(x-1)^2+(y-2)^2+(z-3)^2&=2=(\sqrt{x})^2
\end{align*}

so is $\sqrt{2}$ the radius?

Yes, and I assume this is just a typo, but you want:

$$(x-1)^2+(y-2)^2+(z-3)^2=2=\left(\sqrt{2}\right)^2$$

Now, suppose we define:

$$\left(x_A,y_A,z_A\right)$$ = point $A$

$$\left(x_O,y_O,z_O\right)$$ = point $O$

And so we have:

$$\vec{AP}=\left\langle x-x_A,y-y_A,z-z_A \right\rangle$$

$$\vec{OP}=\left\langle x-x_O,y-y_O,z-z_O \right\rangle$$

$$\vec{OA}=\left\langle x_A-x_O,y_A-y_O,z_A-z_O \right\rangle$$

And then:

$$\left|\vec{OA}\right|=\sqrt{\left(x_A-x_O\right)^2+\left(y_A-y_O\right)^2+\left(z_A-z_O\right)^2}$$

Now suppose the given equation is:

$$\vec{AP}\cdot\vec{OP}-\vec{OA}\cdot\vec{OP}=k-\left|\vec{OA}\right|^2$$ where $0<k$

We then find:

$$\left(\left(x-x_A\right)\left(x-x_O\right)+\left(y-y_A\right)\left(y-y_O\right)+\left(z-z_A\right)\left(z-z_O\right)\right)-\left(\left(x_A-x_O\right)\left(x-x_O\right)+\left(y_A-y_O\right)\left(y-y_O\right)+\left(z_A-z_O\right)\left(z-z_O\right)\right)=k-\left(\left(x_A-x_O\right)^2+\left(y_A-y_O\right)^2+\left(z_A-z_O\right)^2\right)$$

After some algebra, this becomes:

$$\left(x-\left(x_A+x_O\right)\right)^2+\left(y-\left(y_A+y_O\right)\right)^2+\left(z-\left(z_A+z_O\right)\right)^2=\left(\sqrt{k}\right)^2$$

And hence, the given equation describes a sphere with center $$\left(x_A+x_O,y_A+y_O,z_A+z_O\right)$$ and radius $\sqrt{k}$. :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K