MHB 25.1 find all possible Jordan Normal Forms of A

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Forms Normal
Click For Summary
The discussion focuses on finding all possible Jordan Normal Forms of a matrix A with the characteristic polynomial $$(\lambda-2)^2(\lambda+1)^2$$. The eigenvalues are identified as 2 and -1, each with algebraic multiplicity of 2. Various Jordan forms are proposed, including configurations where both eigenvalues have independent eigenvectors, as well as cases where one eigenvalue has fewer independent eigenvectors. The forms demonstrate different arrangements of Jordan blocks based on the geometric multiplicities of the eigenvalues. The analysis emphasizes the relationship between algebraic and geometric multiplicities in determining the structure of the Jordan Normal Forms.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{1000}
Suppose that A is a matrix whose characteristic polynomial is
$$(\lambda-2)^2(\lambda+1)^2$$
find all possible Jordan Normal Forms of A (up to permutation of the Jordan blocks).ok i have been looking at examples so pretty fuzzy on this
for the roots are 2 and -1so my first stab at this is

$\left[\begin{array}{c} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 &2 \end{array}\right]$
 
Last edited:
Physics news on Phys.org
When a matrix has repeating eigenvalues, the various Jordan forms will have "blocks" with those eigenvalues on the main diagonal and either "0" or "1" above them, depending on what the corresponding eigenvector are. Yes, the diagonal matrix with only "0" above the eigenvalues is a Jordan matrix where there are 4 independent eigenvectors (a "complete set" of eigenvectors or a basis for the space consisting of eigenvectors). In this case, both eigenvalues have "algebraic multiplicity" and "geometric multiplicity" 2. Other possible Jordan forms, are

$\begin{bmatrix}-1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$
when there are two independent eigenvectors corresponding to eigenvalue 2 but only one (and multiples) corresponding to eigenvalue -1. We say that -1 and 2 both have "algebraic multiplicity" 2 and that 2 has "geometric multiplicity" 2 but that -1 has "geometric multiplicity 1".

$\begin{bmatrix}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$
when there are two independent eigenvectors corresponding to eigenvalue -1 but only one (and multiples) corresponding to eigenvalue 2.We say that -1 and 2 both have "algebraic multiplicity" 2 and that -1 has "geometric multiplicity" 2 but that 2 has "geometric multiplicity 1".


and
$\begin{bmatrix}-1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$ when there are only one eigenvector (and multiples) corresponding to each of eigenvalue -1 and eigenvalue 2.We say that -1 and 2 both have "algebraic multiplicity" 2 but that both -1 and 2 have "geometric multiplicity 1".

(An eigenvalue, $\lambda_0$, has "algebraic multiplicity" n if $\lambda- \lambda_0$ occurs to the nth power as a factor of the characteristic equation. It has "geometric multiplicity" n if the subspace of all eigenvector has dimension n. Of course the "geometric multiplicity" of a given eigenvalue is always less than or equal to its "algebraic multiplicity".)
 
Last edited:

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K