2D kinematics problem -- Skateboard ramp jump calculations

Click For Summary
The discussion revolves around the calculations for a skateboard ramp jump, focusing on the kinematics involved. The initial velocities in the x and y directions are calculated, but confusion arises regarding the final vertical velocity before leaving the ramp. It's clarified that while on the incline, the skateboarder experiences acceleration due to gravity, affecting both velocity components uniformly to maintain their ratio. The equations used for calculating time and distance are correct, but the misunderstanding lies in the nature of motion on the incline versus projectile motion. Overall, the skateboarder's velocity components must decrease together to avoid collision with the ramp.
weewooweee
Messages
2
Reaction score
0
Homework Statement
A skateboarder starts up 1m high 30 degree ramp at a speed of 5.2m/s. The skateboard wheels roll without friction. At the top, she leaves the ramp and sails through the air. How far from the end of the ramp does the skateboarder touch down?
Relevant Equations
v^2 = u^2 + 2as
s= vt - 1/2at^2
s = ut + 1/2at^2
So I tried the following:
Getting the velocities for x and y
V_xi = 5.2cos(30) = 4.5
V_yi = 5.2sin(30) = 2.6
Then I use v^2 = u^2 +2as to get the final velocities before she leaves the ramp:
for V_x the final is the same as the initial since the equation becomes V_xf = V_xi
for V_y the final is the following: v_yf = sqrt(|2.6^2- 2*9.8*1) = 3.58 m/s -> This doesnt make sense to me, shouldnt it slow down?
After this, I use the equation s = ut+ 1/2at^2 to calculate the horizontal distance as:
-1 = 3.58t - 1/2(9.8)t^2
Solving the quadratic gives t=0.946 s
Using s =ut+1/2at^2
s = 4.5(0.946) + 0 = 4.26 m
Which is incorrect, I'm not sure where I went wrong here.
 
Physics news on Phys.org
weewooweee said:
for V_x the final is the same as the initial since the equation becomes V_xf = V_xi
Why is that the case? The acceleration is ##a=g\sin\!\theta## down the incline. This has x and y components. You do not have projectile motion while the skateboarder is on the incline.
 
kuruman said:
Why is that the case? The acceleration is ##a=g\sin\!\theta## down the incline. This has x and y components. You do not have projectile motion here.
using v^2 = u^2 + 2as, since in the horizontal direction acceleration is 0, v^2 = u^2 and they're the same value. Not sure though, haven't taken anything to do with forces so far, only 1D and 2D kinematics.
 
When the skateboarder moves in a straight line up the incline the velocity vector is along the incline and stays that way until she flies off at the end. This means that ##\dfrac{v_y}{v_x}=\tan(30^{\circ}).## You cannot say that the vertical component decreases but not the horizontal component. If that happened, the skateboarder would plow into the incline. Both components must decrease uniformly to maintain their ratio constant.
 
  • Like
Likes MatinSAR and Lnewqban
Gravity is slowing down the skateboarder while on the ramp; therefore, V1 < V0.
Calculating t1 and t2 will help you find the horizontal distance of the flight.

hi61o2.png
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
7K
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
35K