MHB 30-60-90 triangle side lengths

  • Thread starter Thread starter jimhayes
  • Start date Start date
  • Tags Tags
    Triangle
AI Thread Summary
In a 30-60-90 triangle with a long leg measuring 8, the short leg is represented as x, and the hypotenuse as 2x. The relationship between the sides indicates that the long leg equals x times the square root of 3. By setting up the equation x times the square root of 3 equal to 8, the value of x is calculated as 8 divided by the square root of 3, which simplifies to 8 times the square root of 3 over 3. Consequently, the short leg measures 8 times the square root of 3 over 3, and the hypotenuse is 16 times the square root of 3 over 3.
jimhayes
Messages
1
Reaction score
0
I have a 30-60-90 triangle with the length of 8 for the long leg. I am trying to find the lengths of the other two legs. I believe the short leg is x, and hypotenuse is 2x, and the long leg is x times the \sqrt{3}. I put x times \sqrt{3}=8 although I am not sure how to do this formula to find the value of x. I also don't have a calculator with square root functions.
 
Mathematics news on Phys.org
jimhayes said:
I have a 30-60-90 triangle with the length of 8 for the long leg. I am trying to find the lengths of the other two legs. I believe the short leg is x, and hypotenuse is 2x, and the long leg is x times the \sqrt{3}. I put x times \sqrt{3}=8 although I am not sure how to do this formula to find the value of x. I also don't have a calculator with square root functions.

short leg: $x$
hypotenuse: $2x$
long leg: $x \cdot \sqrt{3}$

It is given that the long leg is $8$, so $\displaystyle{x \cdot \sqrt{3}=8 \Rightarrow x=\frac{8}{\sqrt{3}}=\frac{8 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}=\frac{8 \cdot \sqrt{3}}{3}}$

So, the short leg is $\displaystyle{\frac{8 \cdot \sqrt{3}}{3}}$ and the hypotenuse is $\displaystyle{2\frac{8 \cdot \sqrt{3}}{3}=\frac{16 \cdot \sqrt{3}}{3}}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top