307.8.3 Compute A^n for the Jordan block

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Block
Click For Summary
SUMMARY

The discussion focuses on computing the powers of a Jordan block matrix, specifically the matrix $A=\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$. Participants derive the expressions for $A^2$, $A^3$, and $A^4$, confirming that $A^n$ can be computed through matrix multiplication. The results demonstrate that for a Jordan block, the powers can be expressed in terms of the eigenvalue $\lambda$ and the structure of the Jordan block itself, leading to a general formula for $A^n$.

PREREQUISITES
  • Understanding of Jordan block matrices
  • Matrix multiplication techniques
  • Basic linear algebra concepts
  • Familiarity with eigenvalues and eigenvectors
NEXT STEPS
  • Study the properties of Jordan forms in linear algebra
  • Learn about matrix exponentiation techniques
  • Explore applications of Jordan blocks in differential equations
  • Investigate the relationship between Jordan blocks and canonical forms
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, matrix theory, or related fields, will benefit from this discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{ Compute $A^n$ for the Jordan block
$\displaystyle A=\begin{bmatrix}
\lambda&0\\0&\lambda
\end{bmatrix}$ and $n=1,2,3,4$ }$
$\textit{Make a guess on what $A^n$ will be for any $n$. }$
$\textit{Note: this matrix is not diagonalizable,compute the matrix powers by hand.}$

ok I think this is down by increasing the dim
 
Physics news on Phys.org
I think it is done by doing what the problem tells you to do! You are given a 2 by 2 matrix, A, and asks you to find A^2, A^3, and A^4. Do you know how to multiply matrices?
 
not sure that souns too easy?

but couldn't find an example
 
An example of what? You are given a Jordan block $A= \begin{bmatrix}\lambda & 0 \\ 0 & \lambda \end{bmatrix}$. You don't say what $\lambda$ is but since this is a "Jordan Block" I imagine it is something like $\begin{bmatrix}a & 1 \\ 0 & a \end{bmatrix}$ (so that A is 4 by 4) or $\begin{bmatrix}a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$ (so that A is 6 by 6). In the first case, A would be $\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}$.$A^2= \begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}= \begin{bmatrix}a^2 & 2a & 0 & 0 \\ 0 & a^2 & 0 & 0 \\ 0 & 0 & a^2 & 2a \\ 0 & 0 & 0 & a^2 \end{bmatrix}$.

Do you see that, with $\lambda= \begin{bmatrix}a & 1 \\ 0 & a \end{bmatrix}$,this is just $A^2= \begin{bmatrix}\lambda^2 & 0 \\ 0 & \lambda^2 \end{bmatrix}$ ? What do you think $A^3$, etc. will be? That is why we work with "block matrices" and is, I suspect, the whole point of this exercise.
 
Country Boy said:
$A^2= \begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}= \begin{bmatrix}a^2 & 2a & 0 & 0 \\ 0 & a^2 & 0 & 0 \\ 0 & 0 & a^2 & 2a \\ 0 & 0 & 0 & a^2 \end{bmatrix}$.

Do you see that, with $\lambda= \begin{bmatrix}a & 1 \\ 0 & a \end{bmatrix}$,this is just $A^2= \begin{bmatrix}\lambda^2 & 0 \\ 0 & \lambda^2 \end{bmatrix}$ ? What do you think $A^3$, etc. will be? That is why we work with "block matrices" and is, I suspect, the whole point of this exercise.

I suppose we could do this:

$A^3= a^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
= \begin{bmatrix}a^3 & 2a^2 & 0 & 0 \\
0 & a^3 & 0 & 0 \\
0 & 0 & a^3 & 2a^2 \\
0 & 0 & 0 & a^3\end{bmatrix}
$

$A^4= a^3\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
=\begin{bmatrix}a^4& 4 a^3& 0& 0\\0& a^4& 0& 0\\0&0 &a^4 &4 a^3\\0 & 0& 0& a^4\end{bmatrix}$
 
Last edited:
karush said:
I suppose we could do this:

$A^3= a^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
= \begin{bmatrix}a^3 & 2a^2 & 0 & 0 \\
0 & a^3 & 0 & 0 \\
0 & 0 & a^3 & 2a^2 \\
0 & 0 & 0 & a^3\end{bmatrix}
$

You mean $A^3= A^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}$

$A^4= a^3\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
=\begin{bmatrix}a^4& 4 a^3& 0& 0\\0& a^4& 0& 0\\0&0 &a^4 &4 a^3\\0 & 0& 0& a^4\end{bmatrix}$
 
$A^3= A^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
= \begin{bmatrix}a^3 & 2a^2 & 0 & 0 \\
0 & a^3 & 0 & 0 \\
0 & 0 & a^3 & 2a^2 \\
0 & 0 & 0 & a^3\end{bmatrix}$

$A^4= A^3\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
=\begin{bmatrix}a^4& 4 a^3& 0& 0\\0& a^4& 0& 0\\0&0 &a^4 &4 a^3\\0 & 0& 0& a^4\end{bmatrix}$

hopefully

 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K