307.8.3 Compute A^n for the Jordan block

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Block
Click For Summary

Discussion Overview

The discussion revolves around computing the powers of a Jordan block matrix, specifically the matrix $A=\begin{bmatrix} \lambda&0\\0&\lambda \end{bmatrix}$ for various values of $n$. Participants are tasked with finding $A^2$, $A^3$, and $A^4$, and are encouraged to explore the general form of $A^n$.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests that the computation can be done by following the problem's instructions, implying a straightforward approach to matrix multiplication.
  • Another participant expresses uncertainty about the simplicity of the task, indicating a lack of examples to reference.
  • A participant provides a detailed example of computing $A^2$ for a Jordan block of size 4, suggesting that the pattern observed could extend to higher powers.
  • There are multiple formulations of $A^3$ and $A^4$, with participants proposing different approaches to derive these powers, including using previous results to compute subsequent powers.
  • Some participants note that the structure of the Jordan block influences the resulting powers, hinting at a potential pattern in the computations.

Areas of Agreement / Disagreement

There is no clear consensus on the approach to take or the results of the computations, as participants express differing levels of confidence and understanding regarding the task. Multiple competing views on how to compute the powers of the matrix remain present.

Contextual Notes

Participants do not specify the value of $\lambda$, which may affect the generality of their results. The discussion also reflects varying interpretations of the Jordan block structure and its implications for matrix powers.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{ Compute $A^n$ for the Jordan block
$\displaystyle A=\begin{bmatrix}
\lambda&0\\0&\lambda
\end{bmatrix}$ and $n=1,2,3,4$ }$
$\textit{Make a guess on what $A^n$ will be for any $n$. }$
$\textit{Note: this matrix is not diagonalizable,compute the matrix powers by hand.}$

ok I think this is down by increasing the dim
 
Physics news on Phys.org
I think it is done by doing what the problem tells you to do! You are given a 2 by 2 matrix, A, and asks you to find A^2, A^3, and A^4. Do you know how to multiply matrices?
 
not sure that souns too easy?

but couldn't find an example
 
An example of what? You are given a Jordan block $A= \begin{bmatrix}\lambda & 0 \\ 0 & \lambda \end{bmatrix}$. You don't say what $\lambda$ is but since this is a "Jordan Block" I imagine it is something like $\begin{bmatrix}a & 1 \\ 0 & a \end{bmatrix}$ (so that A is 4 by 4) or $\begin{bmatrix}a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$ (so that A is 6 by 6). In the first case, A would be $\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}$.$A^2= \begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}= \begin{bmatrix}a^2 & 2a & 0 & 0 \\ 0 & a^2 & 0 & 0 \\ 0 & 0 & a^2 & 2a \\ 0 & 0 & 0 & a^2 \end{bmatrix}$.

Do you see that, with $\lambda= \begin{bmatrix}a & 1 \\ 0 & a \end{bmatrix}$,this is just $A^2= \begin{bmatrix}\lambda^2 & 0 \\ 0 & \lambda^2 \end{bmatrix}$ ? What do you think $A^3$, etc. will be? That is why we work with "block matrices" and is, I suspect, the whole point of this exercise.
 
Country Boy said:
$A^2= \begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}= \begin{bmatrix}a^2 & 2a & 0 & 0 \\ 0 & a^2 & 0 & 0 \\ 0 & 0 & a^2 & 2a \\ 0 & 0 & 0 & a^2 \end{bmatrix}$.

Do you see that, with $\lambda= \begin{bmatrix}a & 1 \\ 0 & a \end{bmatrix}$,this is just $A^2= \begin{bmatrix}\lambda^2 & 0 \\ 0 & \lambda^2 \end{bmatrix}$ ? What do you think $A^3$, etc. will be? That is why we work with "block matrices" and is, I suspect, the whole point of this exercise.

I suppose we could do this:

$A^3= a^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
= \begin{bmatrix}a^3 & 2a^2 & 0 & 0 \\
0 & a^3 & 0 & 0 \\
0 & 0 & a^3 & 2a^2 \\
0 & 0 & 0 & a^3\end{bmatrix}
$

$A^4= a^3\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
=\begin{bmatrix}a^4& 4 a^3& 0& 0\\0& a^4& 0& 0\\0&0 &a^4 &4 a^3\\0 & 0& 0& a^4\end{bmatrix}$
 
Last edited:
karush said:
I suppose we could do this:

$A^3= a^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
= \begin{bmatrix}a^3 & 2a^2 & 0 & 0 \\
0 & a^3 & 0 & 0 \\
0 & 0 & a^3 & 2a^2 \\
0 & 0 & 0 & a^3\end{bmatrix}
$

You mean $A^3= A^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}$

$A^4= a^3\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
=\begin{bmatrix}a^4& 4 a^3& 0& 0\\0& a^4& 0& 0\\0&0 &a^4 &4 a^3\\0 & 0& 0& a^4\end{bmatrix}$
 
$A^3= A^2\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
= \begin{bmatrix}a^3 & 2a^2 & 0 & 0 \\
0 & a^3 & 0 & 0 \\
0 & 0 & a^3 & 2a^2 \\
0 & 0 & 0 & a^3\end{bmatrix}$

$A^4= A^3\begin{bmatrix}a & 1 & 0 & 0 \\0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a\end{bmatrix}
=\begin{bmatrix}a^4& 4 a^3& 0& 0\\0& a^4& 0& 0\\0&0 &a^4 &4 a^3\\0 & 0& 0& a^4\end{bmatrix}$

hopefully

 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K