MHB 311.3.1.1 - Determinants And Cofactor Expansion

Click For Summary
The discussion focuses on calculating the determinant of a 3x3 matrix using cofactor expansion methods. The first method involves expanding across the first row, resulting in a determinant value of 1. The second method uses a cofactor expansion down the second column after rearranging the matrix, also yielding a determinant of 1. Participants note that there are various methods for calculating determinants, indicating a broader interest in linear algebra techniques. The conversation highlights the importance of understanding different approaches to solving mathematical problems.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{898}
311 Determinants And Cofactor Expansion (3.1.1)

a. Compare the determinants using a cofactor expansion across the first row.

b. compute the determinant by a cofactor expansion down the second column.

$$\left|
\begin{array}{rrr}
3&0& 4\\
2&3& 2\\
0&5&-1\\
\end{array}
\right|$$

ok I accually start this class tomorro but thot I would try some basic stuff
already stuck...
 
Last edited:
Physics news on Phys.org
Re: 311.3.1.1

karush said:
a. Compare the determinants using a cofactor expansion across the first row.

b. compute the determinant by a cofactor expansion down the second column.

$$\left|
\begin{array}{rrr}
3&0& 4\\
2&3& 2\\
0&5&-1\\
\end{array}
\right|$$

ok I accually start this class tomorro but thot I would try some basic stuff
already stuck...

(a)

$3\begin{vmatrix}
3 & 2\\
5 & -1
\end{vmatrix} - 0\begin{vmatrix}
2 &2 \\
0 & -1
\end{vmatrix}+4\begin{vmatrix}
2 & 3\\
0& 5
\end{vmatrix} =3(-3-10)-0(-2-0)+4(10-0)=1$

(b)

note $\begin{vmatrix}
3 & 0 & 4\\
2 & 3 & 2\\
0 & 5& -1
\end{vmatrix}=\begin{vmatrix}
0 & 4 & 3\\
3 & 2 & 2\\
5 & -1 & 0
\end{vmatrix}$

the second determinant is formed by moving the 1st column in the original matrix to the 3rd column. Now use the new 1st column and its cofactors ...

$0\begin{vmatrix}
2 & 2\\
-1 & 0
\end{vmatrix}-3\begin{vmatrix}
4 & 3\\
-1 & 0
\end{vmatrix}+5\begin{vmatrix}
4 &3 \\
2 & 2
\end{vmatrix}=0[0-(-2)]-3[0-(-3)]+5(8-6)=1$

This is a method I learned in undergrad physics that "stuck". There are other methods to do these ... I'm sure someone else well-versed in linear algebra will contribute.
 
Please give threads titles that briefly describe the thread topic. A thread title that is simply a series of digits and periods is not what we consider a good thread title. :)
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy

SSCwt.png
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K