1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

3dimensional wave propogation.

  1. Feb 19, 2013 #1
    I thought the maths area would be the best place to ask..

    What kind of function would represent a 3 dimensional sine wave?
    A sine wave, where the z-axis lays on the circumference of a circle.
     
  2. jcsd
  3. Feb 19, 2013 #2

    berkeman

    User Avatar

    Staff: Mentor

    What is the context of the question? The equation for a symmetric longitudinal wave in 3-D is straightforward, I think. But I'm not sure there is a solution for symmetric transverse waves in 3-D...
     
  4. Feb 19, 2013 #3
    Essentially, the function for this:
    sinani2.gif

    There isn't really a context, I'm not currently studying anything relating to this, it just interests me to see the behaviour of waves.

    I seem to have found it, by looking for an example image.
    z = sinx(√(x2+y2))
     
  5. Feb 19, 2013 #4

    berkeman

    User Avatar

    Staff: Mentor

    Oh, I misunderstood your question then. I thought you wanted it to be symmetric in 3 dimensions, not just 2.
     
  6. Feb 19, 2013 #5
    Actually, that would be interesting..

    Thank you for the assistance though. ^_^
     
  7. Feb 20, 2013 #6
    Just solve the wave equation in three dimensions, if you are only interested in isotropic propogation then set all the angular derivatives to zero.
     
  8. Feb 27, 2013 #7

    jasonRF

    User Avatar
    Science Advisor
    Gold Member

    I think like others I am not certain what the OP really meant, but I interpreted the question this way too - perhaps because I have a general interest in waves. Anyway, an example of a 3D plane wave would be:
    [tex]
    f(x,y,z,t) = \sin\left(k_x x + k_y y + k_z z - \omega t \right)
    [/tex]
     
  9. Feb 27, 2013 #8

    olivermsun

    User Avatar
    Science Advisor

    The axisymmetric 2d wave is of interest in surface wave propagation from a point source. There you examine sin (kr-ωt) where r= sqrt(x^2 + y^2).

    The radially symmetric 3d wave arises for acoustic (pressure) waves emanating from a point source. The relevant plane wave has the form sin (kr - ωt) for r = sort(x^2 + y^2 + z^2) as jasonRF states above.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: 3dimensional wave propogation.
  1. Sine waves (Replies: 6)

  2. Wave function (Replies: 4)

  3. Wave formula (Replies: 6)

  4. Wave functions (Replies: 7)

Loading...