I 4D d'Alembert Green's function for linearised metric

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Q. Calculate the linearised metric of a spherically symmetric body ##\epsilon M## at the origin. The energy momentum tensor is ##T_{ab} = \epsilon M \delta(\mathbf{r}) u_a u_b##. In the harmonic (de Donder) gauge ##\square \bar{h}_{ab} = -16\pi G \epsilon^{-1} T_{ab}## (proved in previous exercise) so
\begin{align*}
\partial_m \partial^m \bar{h}_{ab} =
\begin{cases}
-16\pi GM \delta(\mathbf{r}) & a = b = 0 \\
0 & \mathrm{otherwise}
\end{cases}
\end{align*}with ##u^a = (1,\mathbf{0})##. What is the Green's function for Laplace d'Alembert in 4d?
 
Last edited:
Physics news on Phys.org
Is it the Lapacian (Riemannian space) or rather the D'Alembertian (Lorentzian space) you are looking for?
 
Sorry, I mean the d'Alembertian ##\square = \partial_m \partial^m = \partial_0^2 - \nabla^2##.
 
  • Like
Likes malawi_glenn
And it's with the Minkowski metric, right?

Then the most simple solution goes as follows: We look for a Green's function, defined by
$$(\partial_0^2-\Delta) G(x)=\delta^{(4)}(x). \qquad (*)$$
For ##r^2=\vec{x}^2 \neq (x^0)^2## the right-hand side is 0, and we can use the spherical symmetry to make the Ansatz
$$G(x^0,\vec{x})=g(x^0,r)$$,
where ##r=|\vec{x}|##. Then the equation reads
$$\partial_0^2 g-\frac{1}{r} \partial_r^2 (r g)=0.$$
Thus ##r g## fulfills the 1D wave equation with the general solution
$$r g(x^0,r)=f_1(x^0-r) + f_2(x^0+r)$$
with arbitrary functions ##f_1## and ##f_2##. Now making use of
$$\Delta \frac{1}{r} = -4 \pi \delta^{(3)}(\vec{x})$$
and plugging in this solution in (*) you get
$$4 \pi [f_1(x^0) + f_2(x^0)]=\delta(x_0),$$
i.e.,
$$f_1(x^0)=\frac{A}{4 \pi} \delta(x^0), \quad f_2(x^0)=\frac{1-A}{4 \pi} \delta(x^0)$$
with an arbitrary constant ##A##. This implies that the most general Green's function for the d'Alembertian is
$$g(x^0,r)=\frac{1}{4 \pi r} [A \delta(x^0-r) + (1-A) \delta(x^0+r)].$$
Now usually you want the retarded propagator, for which ##g(x^0,r)=0## for ##x^0<0##, for which you uniquely get ##A=1##, i.e.,
$$g_{\text{ret}}(x^0,r)=\frac{\delta(x^0-r)}{4 \pi r}.$$
In manifestly covariant form you can express this as
$$g_{\text{ret}}(x^0,r)=\frac{\Theta(x^0)}{2 \pi} \delta(x \cdot x).$$
 
  • Like
  • Love
  • Informative
Likes dextercioby, malawi_glenn and ergospherical
That said, it is just the regular Green’s function of the wave equation in three dimensions. It should be available in most textbooks on mathematical methods?

Also note that you don’t need it to solve your problem. It is clear that the problem has a stationary solution that is the Green’s function of the Laplace operator in three dimensions. The general time dependent solution can then be found by adding homogeneous solutions to that solution.
 
  • Like
Likes ergospherical and vanhees71
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
11
Views
3K
Replies
1
Views
899
Replies
5
Views
1K
Replies
8
Views
2K
Replies
4
Views
927
Back
Top