I 4D d'Alembert Green's function for linearised metric

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Q. Calculate the linearised metric of a spherically symmetric body ##\epsilon M## at the origin. The energy momentum tensor is ##T_{ab} = \epsilon M \delta(\mathbf{r}) u_a u_b##. In the harmonic (de Donder) gauge ##\square \bar{h}_{ab} = -16\pi G \epsilon^{-1} T_{ab}## (proved in previous exercise) so
\begin{align*}
\partial_m \partial^m \bar{h}_{ab} =
\begin{cases}
-16\pi GM \delta(\mathbf{r}) & a = b = 0 \\
0 & \mathrm{otherwise}
\end{cases}
\end{align*}with ##u^a = (1,\mathbf{0})##. What is the Green's function for Laplace d'Alembert in 4d?
 
Last edited:
Physics news on Phys.org
Is it the Lapacian (Riemannian space) or rather the D'Alembertian (Lorentzian space) you are looking for?
 
Sorry, I mean the d'Alembertian ##\square = \partial_m \partial^m = \partial_0^2 - \nabla^2##.
 
  • Like
Likes malawi_glenn
And it's with the Minkowski metric, right?

Then the most simple solution goes as follows: We look for a Green's function, defined by
$$(\partial_0^2-\Delta) G(x)=\delta^{(4)}(x). \qquad (*)$$
For ##r^2=\vec{x}^2 \neq (x^0)^2## the right-hand side is 0, and we can use the spherical symmetry to make the Ansatz
$$G(x^0,\vec{x})=g(x^0,r)$$,
where ##r=|\vec{x}|##. Then the equation reads
$$\partial_0^2 g-\frac{1}{r} \partial_r^2 (r g)=0.$$
Thus ##r g## fulfills the 1D wave equation with the general solution
$$r g(x^0,r)=f_1(x^0-r) + f_2(x^0+r)$$
with arbitrary functions ##f_1## and ##f_2##. Now making use of
$$\Delta \frac{1}{r} = -4 \pi \delta^{(3)}(\vec{x})$$
and plugging in this solution in (*) you get
$$4 \pi [f_1(x^0) + f_2(x^0)]=\delta(x_0),$$
i.e.,
$$f_1(x^0)=\frac{A}{4 \pi} \delta(x^0), \quad f_2(x^0)=\frac{1-A}{4 \pi} \delta(x^0)$$
with an arbitrary constant ##A##. This implies that the most general Green's function for the d'Alembertian is
$$g(x^0,r)=\frac{1}{4 \pi r} [A \delta(x^0-r) + (1-A) \delta(x^0+r)].$$
Now usually you want the retarded propagator, for which ##g(x^0,r)=0## for ##x^0<0##, for which you uniquely get ##A=1##, i.e.,
$$g_{\text{ret}}(x^0,r)=\frac{\delta(x^0-r)}{4 \pi r}.$$
In manifestly covariant form you can express this as
$$g_{\text{ret}}(x^0,r)=\frac{\Theta(x^0)}{2 \pi} \delta(x \cdot x).$$
 
  • Like
  • Love
  • Informative
Likes dextercioby, malawi_glenn and ergospherical
That said, it is just the regular Green’s function of the wave equation in three dimensions. It should be available in most textbooks on mathematical methods?

Also note that you don’t need it to solve your problem. It is clear that the problem has a stationary solution that is the Green’s function of the Laplace operator in three dimensions. The general time dependent solution can then be found by adding homogeneous solutions to that solution.
 
  • Like
Likes ergospherical and vanhees71
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top