- #1
ergospherical
- 1,072
- 1,365
Doing some revision and getting confused. It's under GR but may as well be under electromagnetism or calculus because that is where the problem is. Taking a shell of mass ##\rho = M\delta(r-R)/(4\pi R^2)## and four velocity corresponding to rotation about ##z## axis i.e. ##U = (1, -\omega y, \omega x, 0)##. Looking at the ##\bar{h}_{i0}## component, say, the Green's function solution if I remember right,
$$\bar{h}_{i0} = -4 \int \frac{T_{i0}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 \mathbf{x}'$$And I can take a multipole expansion
$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{r} + \frac{\mathbf{x} \cdot \mathbf{x}'}{r^3} + \dots$$
Start with ##i = x##, where ##U_x = \omega y##
$$\bar{h}_{x0} = -\frac{4M \omega}{r}\int \frac{\delta(r'-R)}{4\pi R^2} y' \ d^3 \mathbf{x}' - \frac{4M \omega}{r^3} \mathbf{x} \cdot \int \mathbf{x}' \frac{\delta(r'-R)}{4\pi R^2} y' \ d^3\mathbf{x}' + \dots$$
So look at the first term. With ##d^3 \mathbf{x}' = r'^2 \sin{\theta'} dr' d\theta' d\phi'## and putting also ##y' = r' \sin{\phi'}##, then the integral over ##\phi'## from ##0 \rightarrow 2\pi## is going to zero.
With the second term, look at the part$$\mathbf{I} = \int \mathbf{x}' \frac{\delta(r'-R)}{4\pi R^2} y' \ d^3\mathbf{x}'$$Then $$I_{x'} = \int x' y' \frac{\delta(r'-R)}{4\pi R^2} d^3 \mathbf{x}$$and ##x'y' = r'^2 \sin{\phi'} \cos{\phi'}## is also going to go to zero when integrated over ##\phi'##, same story for the other two components. What's the issue?
$$\bar{h}_{i0} = -4 \int \frac{T_{i0}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 \mathbf{x}'$$And I can take a multipole expansion
$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{r} + \frac{\mathbf{x} \cdot \mathbf{x}'}{r^3} + \dots$$
Start with ##i = x##, where ##U_x = \omega y##
$$\bar{h}_{x0} = -\frac{4M \omega}{r}\int \frac{\delta(r'-R)}{4\pi R^2} y' \ d^3 \mathbf{x}' - \frac{4M \omega}{r^3} \mathbf{x} \cdot \int \mathbf{x}' \frac{\delta(r'-R)}{4\pi R^2} y' \ d^3\mathbf{x}' + \dots$$
So look at the first term. With ##d^3 \mathbf{x}' = r'^2 \sin{\theta'} dr' d\theta' d\phi'## and putting also ##y' = r' \sin{\phi'}##, then the integral over ##\phi'## from ##0 \rightarrow 2\pi## is going to zero.
With the second term, look at the part$$\mathbf{I} = \int \mathbf{x}' \frac{\delta(r'-R)}{4\pi R^2} y' \ d^3\mathbf{x}'$$Then $$I_{x'} = \int x' y' \frac{\delta(r'-R)}{4\pi R^2} d^3 \mathbf{x}$$and ##x'y' = r'^2 \sin{\phi'} \cos{\phi'}## is also going to go to zero when integrated over ##\phi'##, same story for the other two components. What's the issue?