6.2.25 Evaluate Limit of x to infty

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The limit of the expression $\displaystyle\lim_{x\to \infty}\dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$ evaluates to 1. By substituting $e^{3x} = t$, where $t$ approaches infinity, the expression simplifies to $\displaystyle\lim_{t \to \infty} \left( \frac{t^2 - 1}{t^2 + 1} \right)$, which further simplifies to 1 as $t$ increases. This method effectively eliminates the complexity of the exponential function.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with exponential functions, particularly $e^{x}$
  • Basic algebraic manipulation skills
  • Knowledge of L'Hôpital's Rule (optional for deeper analysis)
NEXT STEPS
  • Study the properties of exponential functions and their limits
  • Learn about L'Hôpital's Rule for evaluating indeterminate forms
  • Explore advanced limit techniques, such as substitution methods
  • Practice evaluating limits involving other functions, such as logarithmic and polynomial functions
USEFUL FOR

Students studying calculus, mathematics educators, and anyone looking to deepen their understanding of limits and exponential functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
6.2.25 DOY357

Evaluate
$\displaystyle\lim_{x\to \infty}\dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$

sorry I'm clueless with this e stuff:(
 
Physics news on Phys.org
If you find e hard, then rewrite $$e^{3x} = t$$. Now t is approaching infinity, and no more e's in this problem.
 
karush said:
6.2.25 DOY357

Evaluate
$\displaystyle\lim_{x\to \infty}\dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$

sorry I'm clueless with this e stuff:(

$\displaystyle \begin{align*} \lim_{x \to \infty} \left( \frac{\mathrm{e}^{3\,x} - \mathrm{e}^{-3\,x}}{\mathrm{e}^{3x} + \mathrm{e}^{-3\,x}} \right) &= \lim_{x \to \infty} \left[ \left( \frac{\mathrm{e}^{3\,x} - \mathrm{e}^{-3\,x}}{\mathrm{e}^{3x} + \mathrm{e}^{-3\,x}} \right) \left( \frac{\mathrm{e}^{3\,x}}{\mathrm{e}^{3\,x}} \right) \right] \\ &= \lim_{x \to \infty} \left( \frac{\mathrm{e}^{6\,x} - 1}{\mathrm{e}^{6\,x} + 1} \right) \\ &= \lim_{x \to \infty} \left( 1 - \frac{2}{\mathrm{e}^{6\,x} + 1} \right) \\ &= 1 - 0 \\ &= 1 \end{align*}$
 
well that was interesting a very helpfull
I have a few more coming up but will start a new post
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K