MHB 6.2.25 Evaluate Limit of x to infty

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit of the expression as x approaches infinity is evaluated as follows: The original limit, $\lim_{x\to \infty}\dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$, simplifies by multiplying the numerator and denominator by $e^{3x}$. This leads to $\lim_{x \to \infty} \left( \frac{e^{6x} - 1}{e^{6x} + 1} \right)$, which further simplifies to $1 - \frac{2}{e^{6x} + 1}$. As x approaches infinity, the term $\frac{2}{e^{6x} + 1}$ approaches zero, resulting in a final limit of 1. The discussion highlights the usefulness of rewriting exponential expressions for easier evaluation.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
6.2.25 DOY357

Evaluate
$\displaystyle\lim_{x\to \infty}\dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$

sorry I'm clueless with this e stuff:(
 
Physics news on Phys.org
If you find e hard, then rewrite $$e^{3x} = t$$. Now t is approaching infinity, and no more e's in this problem.
 
karush said:
6.2.25 DOY357

Evaluate
$\displaystyle\lim_{x\to \infty}\dfrac{e^{3x}-e^{-3x}}{e^{3x}+e^{-3x}}$

sorry I'm clueless with this e stuff:(

$\displaystyle \begin{align*} \lim_{x \to \infty} \left( \frac{\mathrm{e}^{3\,x} - \mathrm{e}^{-3\,x}}{\mathrm{e}^{3x} + \mathrm{e}^{-3\,x}} \right) &= \lim_{x \to \infty} \left[ \left( \frac{\mathrm{e}^{3\,x} - \mathrm{e}^{-3\,x}}{\mathrm{e}^{3x} + \mathrm{e}^{-3\,x}} \right) \left( \frac{\mathrm{e}^{3\,x}}{\mathrm{e}^{3\,x}} \right) \right] \\ &= \lim_{x \to \infty} \left( \frac{\mathrm{e}^{6\,x} - 1}{\mathrm{e}^{6\,x} + 1} \right) \\ &= \lim_{x \to \infty} \left( 1 - \frac{2}{\mathrm{e}^{6\,x} + 1} \right) \\ &= 1 - 0 \\ &= 1 \end{align*}$
 
well that was interesting a very helpfull
I have a few more coming up but will start a new post