MHB 6.6.63 ln(7-x)+ln(1-x)=ln(25-x)

  • Thread starter Thread starter karush
  • Start date Start date
AI Thread Summary
The equation ln(7-x) + ln(1-x) = ln(25-x) is solved by applying logarithmic rules to combine the left side into a single logarithm. This leads to the equation (7-x)(1-x) = 25-x, which is then expanded and rearranged to form a quadratic equation x^2 - 7x - 18 = 0. Factoring this equation yields the solutions x = 9 and x = -2. However, since the logarithmic functions require x to be less than 1, the valid solution is x = -2. Therefore, the exact solution for x is -2.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\textbf{6.6.63 Kiliani HS}$
Solve for x give exact form
$\ln{(7-x)}+\ln{(1-x)}=\ln{(25-x)}$

$\begin{array}{rrll}
\textsf{log rules} &(7-x)(1-x) &=25-x \\
\textsf{expand} &7-8x+x^2 &=25-x \\
\textsf{set to zero} &x^2-7x-18 &=0 \\
\textsf{factor} &(x-9)(x+2) &=0 \\
\textsf{zero's} &x&=9, \quad -2 \\
x\le -1\quad\therefore &x&=-2
\end{array}$

I hope...
typo's ?
have to very careful:rolleyes:
 
Mathematics news on Phys.org
there will be $x \lt 1$ not -1 so $x=-2$ will be the answer
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
5
Views
1K
Replies
2
Views
1K
Replies
13
Views
2K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
7
Views
2K
Back
Top