MHB 7.2.1 integrate trig with radical

Click For Summary
The discussion centers on integrating the function $$\int_0^{\pi/4} \sqrt{1+\cos(4x)} \, dx$$ using a substitution method. By letting \( u = 2x \), the limits of integration are adjusted, leading to the integral $$\frac{1}{2} \int_0^{\pi/2} \sqrt{1+\cos(2u)} \, du$$. The double angle identity for cosine simplifies the expression to $$\frac{1}{2} \int_0^{\pi/2} \sqrt{2\cos^2{u}} \, du$$, which further reduces to $$\frac{\sqrt{2}}{2} \int_0^{\pi/2}\cos{u} \, du$$. The final evaluation confirms the result as $$\frac{\sqrt{2}}{2}$$, highlighting the importance of correctly resetting limits during substitution.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5

Attachments

  • 270w.PNG
    270w.PNG
    6.3 KB · Views: 151
  • 270wa.PNG
    270wa.PNG
    9.4 KB · Views: 145
Physics news on Phys.org
$$\int_0^{\pi/4} \sqrt{1+\cos(4x)} \, dx$$

$u=2x \implies du = 2 \, dx$

$$\frac{1}{2} \int_0^{\pi/4} \sqrt{1+\cos[2(2x)]} \cdot 2 \, dx$$

substitute and reset the limits of integration ...

$$\frac{1}{2} \int_0^{\pi/2} \sqrt{1+\cos(2u)} \, du$$

note the double angle identity, $\cos(2u) = 2\cos^2{u}-1 \implies 1+\cos(2u) = 2\cos^2{u}$

$$\frac{1}{2} \int_0^{\pi/2} \sqrt{2\cos^2{u}} \, du$$

note $\sqrt{2\cos^2{u}} = \sqrt{2} \cdot \sqrt{\cos^2{u}} = \sqrt{2} \cdot |\cos{u}| = \sqrt{2} \cdot \cos{u}$ since $\cos{u} \ge 0$ in quadrant I.

$$\frac{\sqrt{2}}{2} \int_0^{\pi/2}\cos{u} \, du$$

$\dfrac{\sqrt{2}}{2} \bigg[\sin{u} \bigg]_0^{\pi/2} = \dfrac{\sqrt{2}}{2} (1-0) = \dfrac{\sqrt{2}}{2}$
 
ok I see now it was resetting the limits because of substitution

Mahalo
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K