-7.8.1 Amp, Period, PS, VS of 3cos(\pi x-2)+5

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Amp Period
Click For Summary

Discussion Overview

The discussion focuses on determining the amplitude, period, phase shift (PS), and vertical shift (VS) of the function $y=3\cos(\pi x-2)+5$. Participants also aim to graph two periods of the function, engaging in a technical exploration of the relevant equations and parameters.

Discussion Character

  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Participants discuss the equations used to identify amplitude, period, phase shift, and vertical shift, with some suggesting different forms of the equations.
  • One participant notes the values for amplitude ($A=3$), angular frequency ($\omega=\pi$), phase shift ($\phi=2$), and vertical shift ($B=5$) for the given function.
  • There is a calculation of the period ($T=\dfrac{2\pi}{\pi}=2$) and phase shift ($PS=\dfrac{2}{\pi}$), with some uncertainty expressed about the phase shift calculation.
  • Clarifications are made regarding the correct forms of the equations, with one participant pointing out an error in the initial equation provided by another.

Areas of Agreement / Disagreement

While there is some agreement on the values of the parameters and the equations used, uncertainty remains regarding the calculation of the phase shift. Participants do not reach a consensus on this aspect.

Contextual Notes

Some participants express uncertainty about the phase shift calculation, indicating a potential misunderstanding or differing interpretations of the parameters involved.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find amplitude, period, PS, VS. graph 2 periods of
$y=3\cos(\pi x-2)+5$

ok I think these are the plug ins we use
$Y=A\cos\left[\omega\left(x-\dfrac{x \phi}{\omega} \right)\right]+B $
or
$A\cos\left(\omega x-\phi\right)+B$
A=amplitude B=VS or veritical shift
$T = \dfrac{2\pi}{\omega-\phi}$
$PS = 0$ assumed here

ok just want to see if I have these plug in eq right, different books use different symbols
 
Physics news on Phys.org
karush said:
Find amplitude, period, PS, VS. graph 2 periods of
$y=3\cos(\pi x-2)+5$

ok I think these are the plug ins we use
$Y=A\cos\left[\omega\left(x-\dfrac{x \phi}{\omega} \right)\right]+B $
or
$A\cos\left(\omega x-\phi\right)+B$
A=amplitude B=VS or veritical shift
$T = \dfrac{2\pi}{\omega-\phi}$
$PS = 0$ assumed here

ok just want to see if I have these plug in eq right, different books use different symbols
Use [math]Y = A\cos\left(\omega x-\phi\right)+B[/math] or [math]Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B[/math]. (You had one too many x's in your first equation.)

-Dan
 
$\displaystyle Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B$
then for $y=3\cos(\pi x-2)+5$
$A=3 \quad \omega=\pi \quad \phi=2 \quad B=5$
before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$

 
karush said:
$\displaystyle Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B$
then for $y=3\cos(\pi x-2)+5$
$A=3 \quad \omega=\pi \quad \phi=2 \quad B=5$
before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
Yup. :)

-Dan
 

before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
so then
$T=\dfrac{2\pi}{\pi}=2$ and $PS=\dfrac{2}{\pi}$
kinda ? on PS
So T is Period?

 
karush said:

before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
so then
$T=\dfrac{2\pi}{\pi}=2$ and $PS=\dfrac{2}{\pi}$
kinda ? on PS
So T is Period?
Yes. You have it right.

-Dan
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K