-7.8.1 Amp, Period, PS, VS of 3cos(\pi x-2)+5

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Amp Period
Click For Summary
SUMMARY

The discussion focuses on determining the amplitude, period, phase shift (PS), and vertical shift (VS) of the function \(y=3\cos(\pi x-2)+5\). The amplitude (A) is 3, the vertical shift (B) is 5, the period (T) is calculated as \(T=\dfrac{2\pi}{\pi}=2\), and the phase shift (PS) is determined to be \(PS=\dfrac{2}{\pi}\). The correct formulas used include \(Y=A\cos(\omega x-\phi)+B\) and \(T=\dfrac{2\pi}{\omega}\).

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with the cosine function and its transformations
  • Knowledge of amplitude, period, phase shift, and vertical shift concepts
  • Basic algebra skills for manipulating equations
NEXT STEPS
  • Explore the derivation of the cosine function transformations in detail
  • Learn about graphing trigonometric functions using software tools like Desmos
  • Study the effects of varying amplitude and period on the graph of cosine functions
  • Investigate real-world applications of trigonometric functions in physics and engineering
USEFUL FOR

Students studying trigonometry, educators teaching mathematical concepts, and anyone interested in graphing and analyzing periodic functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find amplitude, period, PS, VS. graph 2 periods of
$y=3\cos(\pi x-2)+5$

ok I think these are the plug ins we use
$Y=A\cos\left[\omega\left(x-\dfrac{x \phi}{\omega} \right)\right]+B $
or
$A\cos\left(\omega x-\phi\right)+B$
A=amplitude B=VS or veritical shift
$T = \dfrac{2\pi}{\omega-\phi}$
$PS = 0$ assumed here

ok just want to see if I have these plug in eq right, different books use different symbols
 
Physics news on Phys.org
karush said:
Find amplitude, period, PS, VS. graph 2 periods of
$y=3\cos(\pi x-2)+5$

ok I think these are the plug ins we use
$Y=A\cos\left[\omega\left(x-\dfrac{x \phi}{\omega} \right)\right]+B $
or
$A\cos\left(\omega x-\phi\right)+B$
A=amplitude B=VS or veritical shift
$T = \dfrac{2\pi}{\omega-\phi}$
$PS = 0$ assumed here

ok just want to see if I have these plug in eq right, different books use different symbols
Use [math]Y = A\cos\left(\omega x-\phi\right)+B[/math] or [math]Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B[/math]. (You had one too many x's in your first equation.)

-Dan
 
$\displaystyle Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B$
then for $y=3\cos(\pi x-2)+5$
$A=3 \quad \omega=\pi \quad \phi=2 \quad B=5$
before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$

 
karush said:
$\displaystyle Y=A\cos\left[\omega\left(x-\dfrac{\phi}{\omega} \right)\right]+B$
then for $y=3\cos(\pi x-2)+5$
$A=3 \quad \omega=\pi \quad \phi=2 \quad B=5$
before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
Yup. :)

-Dan
 

before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
so then
$T=\dfrac{2\pi}{\pi}=2$ and $PS=\dfrac{2}{\pi}$
kinda ? on PS
So T is Period?

 
karush said:

before the plug...:unsure:
where $T=\dfrac{2\pi}{\omega} $ and $PS=\dfrac{\phi}{\omega}$
so then
$T=\dfrac{2\pi}{\pi}=2$ and $PS=\dfrac{2}{\pi}$
kinda ? on PS
So T is Period?
Yes. You have it right.

-Dan
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K