MHB -7.8.98 amplitude period PS VS graph. of cos eq

AI Thread Summary
The discussion focuses on determining the amplitude, period, phase shift (PS), and vertical shift (VS) for the function y = -3cos(xπ/2) + 2. The amplitude is identified as 3, the vertical shift as 2, and the period is calculated to be 4 using the formula T = 2π/(ω - φ), with ω determined to be π/2 and φ as 0. Participants also discuss graphing the function using TikZ, with some initial attempts at creating the graph. Overall, the conversation emphasizes the calculations and graphical representation of the cosine function based on the provided parameters.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find amplitude, period, PS, VS. then graph.

$[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-10,"ymin":-11.610693119544644,"xmax":10,"ymax":11.610693119544644}},"randomSeed":"996fd79a7f16736ddbff1ce2310a2f50","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"y=-3\\cos\\left(\\frac{k \\pi}{2}\\right)+2"}]}}[/DESMOS]$

ok I think these are the plug ins we use
$Y_{cos}=A\cos\left[\omega\left(x-\dfrac{x \phi}{\omega} \right)\right]+B
\implies A\cos\left(\omega x-\phi\right)+B
\implies T=\dfrac{2\pi}{\omega}
\implies PS=\dfrac{\phi}{\omega}$

ok I wanted to do the graph in tikx but was just looking for an pre done one as an example to fit this eq
 
Mathematics news on Phys.org
$y = A\cos[(\omega-\phi)x] + B$

$T = \dfrac{2\pi}{\omega-\phi}$

$PS = 0$
 
skeeter said:
$y = A\cos[(\omega-\phi)x] + B$

$T = \dfrac{2\pi}{\omega-\phi}$

$PS = 0$
$y=-3\cos\left(\dfrac{x\pi}{2}\right)+2$
so from observation A=|-3|=3 and B=2
$T = \dfrac{2\pi}{\omega-\phi}$
ok I am ? what is $\omega -\phi$

W|A says period is 4

i started a tikz no sure how to transform it ...
$\begin{tikzpicture}[xscale=.5,yscale=.5]
[help lines/.style={black!50,very thin}] \draw[->,thin] (-6,0)--(6,0) node[above] {$x$};
\draw[->,thin] (0,-1)--(0,4) node[above] {$f(x)=sin\ x$};
\node [below] at (-2*3.1416,0) {-2$\pi$};
\node [below] at (-1*3.1416,0) {-$\pi$};
\node [below] at (1*3.1416,0) {$\pi$};
\node [below] at (2*3.1416,0) {2$\pi$};
\draw[very thick,color=red] plot [domain={-360/90}:{360/90},smooth] (\x,{sin(90*\x)});
\end{tikzpicture}$
 
Last edited:
karush said:
$y=-3\cos\left(\frac{x\pi}{2}\right)+2$
so from observation A=|-3|=3 and B=2
$T = \dfrac{2\pi}{\omega-\phi}$
ok I am ? what is $\omega -\phi$

W|A says period is 4

$B = (\omega - \phi) = \dfrac{\pi}{2} \implies T = 4$

note $\phi = 0$ for $y=-3\cos\left(\frac{\pi}{2} \cdot x \right)+2$
 
skeeter said:
$B = (\omega - \phi) = \dfrac{\pi}{2} \implies T = 4$

note $\phi = 0$ for $y=-3\cos\left(\frac{\pi}{2} \cdot x \right)+2$

so then $\omega=\dfrac{\pi}{2}$
 
karush said:
so then $\omega=\dfrac{\pi}{2}$

yes, and $\phi = 0$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top