MHB 8.8.16 LCC 206 Integral at infinity

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Infinity Integral
Click For Summary
The integral I = ∫₀^∞ x/√[5]{x² + 1} dx diverges to infinity, as taking the limit as x approaches infinity confirms. However, it is emphasized that simply taking limits does not prove divergence, illustrated by the example of the integral ∫₀¹ ln(1-x)/x dx, which converges to -π²/6 despite the limit approaching -∞. A substitution method is suggested to solve the original integral, specifically using u = x² + 1. The discussion also touches on the non-elementary nature of certain integrals and the use of Taylor series in evaluating them. The conversation highlights the importance of proper techniques in handling integrals at infinity and convergence issues.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{8.8.16} $
$\tiny\text{LCC 206 Integral at infinity}$
$$I=\int_{0}^{\infty}\frac{x}{\sqrt[5] {x^2 +1}} \,dx= \infty \\$$
$\text{presume just taking the limit
makes the } \\
x\implies\infty \\
\text{thus the integral goes to } \infty$

$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄
 
Physics news on Phys.org
You can't just take the limit to prove divergence. Consider the integral

$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$

Regardless of $$\lim_{x \to 1} \frac{\ln(1-x)}{x } = -\infty$$

To solve the integral I suggest using a substitution.
 
$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} &
\left(x-1\right)du&={} \ d{x}& x&={1-e^{u}}
\end{align} \\
\text{I proceeded but?!? }$$
 
karush said:
$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} &
\left(x-1\right)du&={} \ d{x}& x&={1-e^{u}}
\end{align} \\
\text{I proceeded but?!? }$$

Sorry, I meant use subsritution to solve your integral.
 
$$I=\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} & \left(x-1\right)
du&={} \ d{x}&
x&={1-e^{u}} \
\end{align} \\
\text{however if } x=1 \\
\text{then u is undefined }$$
$$I=\int_{a}^{b} \frac{u}{1-e^{u}}\,du$$
 
karush said:
$$I=\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} & \left(x-1\right)
du&={} \ d{x}&
x&={1-e^{u}} \
\end{align} \\
\text{however if } x=1 \\
\text{then u is undefined }$$
$$I=\int_{a}^{b} \frac{u}{1-e^{u}}\,du$$

Edit, I made a mistake, fixing now...

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{\left( 1 - x \right)} }{x} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = 1 - x \implies \mathrm{d}u = -\mathrm{d}x \end{align*}$ and note that $\displaystyle \begin{align*} u(0) = 1 \end{align*}$ and $\displaystyle \begin{align*} u(1) = 0 \end{align*}$, giving

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x}\,\mathrm{d}x } &= -\int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x }\,\left( -1 \right) \,\mathrm{d}x } \\ &= -\int_1^0{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } \end{align*}$

Now use integration by parts with $\displaystyle \begin{align*} U = \frac{u}{1 - u} \implies \mathrm{d}U = \frac{1\,\left( 1 - u \right) - u \,\left( -1 \right)}{\left( 1 - u \right) ^2}\,\mathrm{d}u = \frac{1}{\left( 1 - u \right) ^2 }\,\mathrm{d}u \end{align*}$ and $\displaystyle \begin{align*} \mathrm{d}V = \frac{\ln{(u)}}{u} \,\mathrm{d}u \implies V = \frac{\left[\ln{(u)} \right] ^2}{2} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } &= \left[ \frac{u\,\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) } \right]_0^1 - \int_0^1{ \frac{\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) ^2 }\,\mathrm{d}u } \end{align*}$

Can you continue?
 
Last edited:
I gave the integral

$$\int^1_0 \frac{\ln(1-x)}{x}\,dx$$

as an example. It is NOT an elementary integral.

To solve the integral

$$I=\int_{0}^{\infty}\frac{x}{\sqrt[5] {x^2 +1}} \,dx$$

Use the substitution $u = x^2+1$
 
Using the Taylor series for $\log(1-x)$,

$$\int_0^1\dfrac{\log(1-x)}{x}\,dx=-\int_0^1\left(\sum_{n=1}^{\infty}\dfrac{x^{n-1}}{n}\right)\,dx$$

$$=\left.\left(-\sum_{n=1}^{\infty}\dfrac{x^n}{n^2}\right)\right|_0^1=-\zeta(2)+0=-\dfrac{\pi^2}{6}$$

where $\zeta(s)$ is the Riemann zeta function.
 

Similar threads

Replies
4
Views
1K
Replies
5
Views
2K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K