karush said:
$$I=\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} & \left(x-1\right)
du&={} \ d{x}&
x&={1-e^{u}} \
\end{align} \\
\text{however if } x=1 \\
\text{then u is undefined }$$
$$I=\int_{a}^{b} \frac{u}{1-e^{u}}\,du$$
Edit, I made a mistake, fixing now...
$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{\left( 1 - x \right)} }{x} \,\mathrm{d}x } \end{align*}$
Let $\displaystyle \begin{align*} u = 1 - x \implies \mathrm{d}u = -\mathrm{d}x \end{align*}$ and note that $\displaystyle \begin{align*} u(0) = 1 \end{align*}$ and $\displaystyle \begin{align*} u(1) = 0 \end{align*}$, giving
$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x}\,\mathrm{d}x } &= -\int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x }\,\left( -1 \right) \,\mathrm{d}x } \\ &= -\int_1^0{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } \end{align*}$
Now use integration by parts with $\displaystyle \begin{align*} U = \frac{u}{1 - u} \implies \mathrm{d}U = \frac{1\,\left( 1 - u \right) - u \,\left( -1 \right)}{\left( 1 - u \right) ^2}\,\mathrm{d}u = \frac{1}{\left( 1 - u \right) ^2 }\,\mathrm{d}u \end{align*}$ and $\displaystyle \begin{align*} \mathrm{d}V = \frac{\ln{(u)}}{u} \,\mathrm{d}u \implies V = \frac{\left[\ln{(u)} \right] ^2}{2} \end{align*}$ and the integral becomes
$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } &= \left[ \frac{u\,\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) } \right]_0^1 - \int_0^1{ \frac{\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) ^2 }\,\mathrm{d}u } \end{align*}$
Can you continue?