8.8.16 LCC 206 Integral at infinity

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Infinity Integral
Click For Summary
SUMMARY

The integral $$I=\int_{0}^{\infty}\frac{x}{\sqrt[5]{x^2 +1}} \,dx$$ diverges to infinity. The discussion emphasizes that simply taking the limit does not suffice to prove divergence, as illustrated by the convergent integral $$\int^1_0 \frac{\ln(1-x)}{x} \,dx = -\frac{\pi^2}{6}$$. A substitution method is suggested for solving integrals, particularly using $$u = \ln(1-x)$$ for the integral involving logarithmic functions. The use of Taylor series and the Riemann zeta function $$\zeta(2)$$ is also highlighted as a method for evaluating certain integrals.

PREREQUISITES
  • Understanding of improper integrals and convergence
  • Familiarity with substitution techniques in integration
  • Knowledge of Taylor series expansions
  • Basic concepts of the Riemann zeta function
NEXT STEPS
  • Study the convergence criteria for improper integrals
  • Learn advanced substitution techniques in calculus
  • Explore Taylor series and their applications in integration
  • Investigate the properties and applications of the Riemann zeta function
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques and the properties of divergent and convergent integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{8.8.16} $
$\tiny\text{LCC 206 Integral at infinity}$
$$I=\int_{0}^{\infty}\frac{x}{\sqrt[5] {x^2 +1}} \,dx= \infty \\$$
$\text{presume just taking the limit
makes the } \\
x\implies\infty \\
\text{thus the integral goes to } \infty$

$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄
 
Physics news on Phys.org
You can't just take the limit to prove divergence. Consider the integral

$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$

Regardless of $$\lim_{x \to 1} \frac{\ln(1-x)}{x } = -\infty$$

To solve the integral I suggest using a substitution.
 
$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} &
\left(x-1\right)du&={} \ d{x}& x&={1-e^{u}}
\end{align} \\
\text{I proceeded but?!? }$$
 
karush said:
$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} &
\left(x-1\right)du&={} \ d{x}& x&={1-e^{u}}
\end{align} \\
\text{I proceeded but?!? }$$

Sorry, I meant use subsritution to solve your integral.
 
$$I=\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} & \left(x-1\right)
du&={} \ d{x}&
x&={1-e^{u}} \
\end{align} \\
\text{however if } x=1 \\
\text{then u is undefined }$$
$$I=\int_{a}^{b} \frac{u}{1-e^{u}}\,du$$
 
karush said:
$$I=\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} & \left(x-1\right)
du&={} \ d{x}&
x&={1-e^{u}} \
\end{align} \\
\text{however if } x=1 \\
\text{then u is undefined }$$
$$I=\int_{a}^{b} \frac{u}{1-e^{u}}\,du$$

Edit, I made a mistake, fixing now...

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{\left( 1 - x \right)} }{x} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = 1 - x \implies \mathrm{d}u = -\mathrm{d}x \end{align*}$ and note that $\displaystyle \begin{align*} u(0) = 1 \end{align*}$ and $\displaystyle \begin{align*} u(1) = 0 \end{align*}$, giving

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x}\,\mathrm{d}x } &= -\int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x }\,\left( -1 \right) \,\mathrm{d}x } \\ &= -\int_1^0{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } \end{align*}$

Now use integration by parts with $\displaystyle \begin{align*} U = \frac{u}{1 - u} \implies \mathrm{d}U = \frac{1\,\left( 1 - u \right) - u \,\left( -1 \right)}{\left( 1 - u \right) ^2}\,\mathrm{d}u = \frac{1}{\left( 1 - u \right) ^2 }\,\mathrm{d}u \end{align*}$ and $\displaystyle \begin{align*} \mathrm{d}V = \frac{\ln{(u)}}{u} \,\mathrm{d}u \implies V = \frac{\left[\ln{(u)} \right] ^2}{2} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } &= \left[ \frac{u\,\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) } \right]_0^1 - \int_0^1{ \frac{\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) ^2 }\,\mathrm{d}u } \end{align*}$

Can you continue?
 
Last edited:
I gave the integral

$$\int^1_0 \frac{\ln(1-x)}{x}\,dx$$

as an example. It is NOT an elementary integral.

To solve the integral

$$I=\int_{0}^{\infty}\frac{x}{\sqrt[5] {x^2 +1}} \,dx$$

Use the substitution $u = x^2+1$
 
Using the Taylor series for $\log(1-x)$,

$$\int_0^1\dfrac{\log(1-x)}{x}\,dx=-\int_0^1\left(\sum_{n=1}^{\infty}\dfrac{x^{n-1}}{n}\right)\,dx$$

$$=\left.\left(-\sum_{n=1}^{\infty}\dfrac{x^n}{n^2}\right)\right|_0^1=-\zeta(2)+0=-\dfrac{\pi^2}{6}$$

where $\zeta(s)$ is the Riemann zeta function.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K