8.8.16 LCC 206 Integral at infinity

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Infinity Integral
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$I=\int_{0}^{\infty}\frac{x}{\sqrt[5]{x^2 +1}} \,dx$$ and related integrals, particularly focusing on issues of convergence and divergence, as well as methods of substitution and series expansion. Participants explore various techniques for handling improper integrals and provide examples to illustrate their points.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant claims that the integral $$I$$ diverges to infinity based on taking the limit as $$x$$ approaches infinity.
  • Another participant argues that simply taking the limit does not prove divergence, citing the integral $$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$ as an example where the limit leads to an undefined form.
  • Several participants discuss the use of substitution methods to evaluate the integral $$\int^1_0 \frac{\ln(1-x)}{x}$$, with one suggesting $$u = \ln(1-x)$$ and noting complications when $$x$$ approaches 1.
  • Another participant emphasizes that the integral $$\int^1_0 \frac{\ln(1-x)}{x}\,dx$$ is not elementary and suggests using the substitution $$u = x^2 + 1$$ for the original integral $$I$$.
  • One participant introduces a Taylor series approach to evaluate the integral of $$\log(1-x)$$, linking it to the Riemann zeta function.

Areas of Agreement / Disagreement

Participants express differing views on the convergence of the integral $$I$$ and the validity of using limits to establish divergence. There is no consensus on the best method to evaluate the integral, and multiple competing approaches are presented.

Contextual Notes

Some participants note that the integral $$I$$ may require careful handling due to its improper nature, and the discussions highlight the complexity of evaluating integrals that involve logarithmic functions and limits.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{8.8.16} $
$\tiny\text{LCC 206 Integral at infinity}$
$$I=\int_{0}^{\infty}\frac{x}{\sqrt[5] {x^2 +1}} \,dx= \infty \\$$
$\text{presume just taking the limit
makes the } \\
x\implies\infty \\
\text{thus the integral goes to } \infty$

$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄
 
Physics news on Phys.org
You can't just take the limit to prove divergence. Consider the integral

$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$

Regardless of $$\lim_{x \to 1} \frac{\ln(1-x)}{x } = -\infty$$

To solve the integral I suggest using a substitution.
 
$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} &
\left(x-1\right)du&={} \ d{x}& x&={1-e^{u}}
\end{align} \\
\text{I proceeded but?!? }$$
 
karush said:
$$\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} &
\left(x-1\right)du&={} \ d{x}& x&={1-e^{u}}
\end{align} \\
\text{I proceeded but?!? }$$

Sorry, I meant use subsritution to solve your integral.
 
$$I=\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} & \left(x-1\right)
du&={} \ d{x}&
x&={1-e^{u}} \
\end{align} \\
\text{however if } x=1 \\
\text{then u is undefined }$$
$$I=\int_{a}^{b} \frac{u}{1-e^{u}}\,du$$
 
karush said:
$$I=\int^1_0 \frac{\ln(1-x)}{x} = - \frac{\pi^2}{6}$$
$$\begin{align}
\displaystyle
u& = {\ln\left({1-x}\right)} & \left(x-1\right)
du&={} \ d{x}&
x&={1-e^{u}} \
\end{align} \\
\text{however if } x=1 \\
\text{then u is undefined }$$
$$I=\int_{a}^{b} \frac{u}{1-e^{u}}\,du$$

Edit, I made a mistake, fixing now...

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{\left( 1 - x \right)} }{x} \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = 1 - x \implies \mathrm{d}u = -\mathrm{d}x \end{align*}$ and note that $\displaystyle \begin{align*} u(0) = 1 \end{align*}$ and $\displaystyle \begin{align*} u(1) = 0 \end{align*}$, giving

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x}\,\mathrm{d}x } &= -\int_0^1{ \frac{\ln{ \left( 1 - x \right) }}{x }\,\left( -1 \right) \,\mathrm{d}x } \\ &= -\int_1^0{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{1 - u}\,\mathrm{d}u } \\ &= \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } \end{align*}$

Now use integration by parts with $\displaystyle \begin{align*} U = \frac{u}{1 - u} \implies \mathrm{d}U = \frac{1\,\left( 1 - u \right) - u \,\left( -1 \right)}{\left( 1 - u \right) ^2}\,\mathrm{d}u = \frac{1}{\left( 1 - u \right) ^2 }\,\mathrm{d}u \end{align*}$ and $\displaystyle \begin{align*} \mathrm{d}V = \frac{\ln{(u)}}{u} \,\mathrm{d}u \implies V = \frac{\left[\ln{(u)} \right] ^2}{2} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^1{ \frac{\ln{(u)}}{u}\,\left( \frac{u}{1 - u} \right) \,\mathrm{d}u } &= \left[ \frac{u\,\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) } \right]_0^1 - \int_0^1{ \frac{\left[ \ln{(u)} \right] ^2 }{2\,\left( 1 - u \right) ^2 }\,\mathrm{d}u } \end{align*}$

Can you continue?
 
Last edited:
I gave the integral

$$\int^1_0 \frac{\ln(1-x)}{x}\,dx$$

as an example. It is NOT an elementary integral.

To solve the integral

$$I=\int_{0}^{\infty}\frac{x}{\sqrt[5] {x^2 +1}} \,dx$$

Use the substitution $u = x^2+1$
 
Using the Taylor series for $\log(1-x)$,

$$\int_0^1\dfrac{\log(1-x)}{x}\,dx=-\int_0^1\left(\sum_{n=1}^{\infty}\dfrac{x^{n-1}}{n}\right)\,dx$$

$$=\left.\left(-\sum_{n=1}^{\infty}\dfrac{x^n}{n^2}\right)\right|_0^1=-\zeta(2)+0=-\dfrac{\pi^2}{6}$$

where $\zeta(s)$ is the Riemann zeta function.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K