A A different discrete normal distribution

Ad VanderVen
Messages
169
Reaction score
13
TL;DR Summary
Is a particular variant of Roy's discrete normal distribution also possible?
In the article A Discrete Normal Distribution of Dilip Roy in the journal COMMUNICATION IN STATISTICS Theory and methods Vol. 32, no. 10, pp. 1871-1883, 2003 one can read:

A discrete normal (##dNormal##) variate, ##dX##, can be viewed as the
discrete concentration of the normal variate ##X## following ##N(\mu,\sigma)## when the corresponding probability mass function of ##dX## can be written as
$$\displaystyle p \left(x \right) \, = \, \Phi((x+1-\mu)/\sigma) - \Phi((x-\mu)/\sigma) \hspace{3ex} x \, = \, \dots, \, -1, \, 0, \, +1, \, \dots$$
where ##\Phi(x)## represents the cumulative distribution function of the normal deviate ##Z##.
My first question is, is there a closed form for the expectation and variance of ##X##?
My second question is, is a discrete normal (##dNormal##) variate of the form
$$\displaystyle p \left(x \right) \, = \, \Phi((x+1/2-\mu)/\sigma) - \Phi((x-1/2-\mu)/\sigma) \hspace{3ex} x \, = \, \dots, \, -1, \, 0, \, +1, \, \dots$$
also possible and what is then the expectation and variance of ##X##? I suspect that the expectation of ##X## is equal to ##\mu##. But I don't know if the variance is equal to ##\sigma^2##.
 
Last edited:
Physics news on Phys.org
If E[X]=Σ p(X)*X, there is no closed end form for p(x) as it contains the cumulative normal dist function, so there should not be a closed end form for the expectation or variance

For the expectation =μ
set μ = 0 and σ = 1
then

##\displaystyle p \left(x \right) \, = \, \Phi(x+1) - \Phi(x) \hspace{3ex} x \, = \, \dots, \, -1, \, 0, \, +1, \, \dots##

then look at x=-1,0,1
on a continuous standard normal, the expectation of p(x) for X = [-1,1] = 0, same as for any interval symmetric around zero
but for above on the discrete normal,
E(x) = p(-1)*-1 + p(0)*0 +p(1)*1
E(x) = -.341 + 0 + .136 <> μ
 
What about my seecond question?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top