Graduate A different discrete normal distribution

Click For Summary
SUMMARY

The discussion centers on the discrete normal distribution (##dNormal##) as presented by Dilip Roy in "COMMUNICATION IN STATISTICS". The probability mass function for ##dNormal## is defined as $$p(x) = \Phi((x+1-\mu)/\sigma) - \Phi((x-\mu)/\sigma)$$, where ##\Phi(x)## is the cumulative distribution function of the normal variate. The participants question the existence of closed forms for the expectation and variance of ##X##, particularly when setting parameters to ##\mu = 0## and ##\sigma = 1##. The expectation does not equal ##\mu##, indicating a discrepancy in the variance calculation.

PREREQUISITES
  • Understanding of discrete probability distributions
  • Familiarity with normal distribution and its properties
  • Knowledge of cumulative distribution functions (CDF)
  • Basic statistical concepts such as expectation and variance
NEXT STEPS
  • Research the closed forms for expectation and variance in discrete distributions
  • Explore the implications of using different forms of probability mass functions
  • Study the properties of the cumulative distribution function in detail
  • Investigate applications of discrete normal distributions in statistical modeling
USEFUL FOR

Statisticians, data analysts, and researchers interested in discrete probability distributions and their applications in statistical theory.

Ad VanderVen
Messages
169
Reaction score
13
TL;DR
Is a particular variant of Roy's discrete normal distribution also possible?
In the article A Discrete Normal Distribution of Dilip Roy in the journal COMMUNICATION IN STATISTICS Theory and methods Vol. 32, no. 10, pp. 1871-1883, 2003 one can read:

A discrete normal (##dNormal##) variate, ##dX##, can be viewed as the
discrete concentration of the normal variate ##X## following ##N(\mu,\sigma)## when the corresponding probability mass function of ##dX## can be written as
$$\displaystyle p \left(x \right) \, = \, \Phi((x+1-\mu)/\sigma) - \Phi((x-\mu)/\sigma) \hspace{3ex} x \, = \, \dots, \, -1, \, 0, \, +1, \, \dots$$
where ##\Phi(x)## represents the cumulative distribution function of the normal deviate ##Z##.
My first question is, is there a closed form for the expectation and variance of ##X##?
My second question is, is a discrete normal (##dNormal##) variate of the form
$$\displaystyle p \left(x \right) \, = \, \Phi((x+1/2-\mu)/\sigma) - \Phi((x-1/2-\mu)/\sigma) \hspace{3ex} x \, = \, \dots, \, -1, \, 0, \, +1, \, \dots$$
also possible and what is then the expectation and variance of ##X##? I suspect that the expectation of ##X## is equal to ##\mu##. But I don't know if the variance is equal to ##\sigma^2##.
 
Last edited:
Physics news on Phys.org
If E[X]=Σ p(X)*X, there is no closed end form for p(x) as it contains the cumulative normal dist function, so there should not be a closed end form for the expectation or variance

For the expectation =μ
set μ = 0 and σ = 1
then

##\displaystyle p \left(x \right) \, = \, \Phi(x+1) - \Phi(x) \hspace{3ex} x \, = \, \dots, \, -1, \, 0, \, +1, \, \dots##

then look at x=-1,0,1
on a continuous standard normal, the expectation of p(x) for X = [-1,1] = 0, same as for any interval symmetric around zero
but for above on the discrete normal,
E(x) = p(-1)*-1 + p(0)*0 +p(1)*1
E(x) = -.341 + 0 + .136 <> μ
 
What about my seecond question?
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
Replies
5
Views
5K
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K