A finite number of positive integer solutions 1/x+1/y=p/q

Click For Summary
SUMMARY

The equation $\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$ has only a finite number of positive integer solutions for any given rational number $\frac{p}{q}$. This conclusion is established through algebraic manipulation and analysis of the constraints imposed by the equation. The discussion highlights the importance of understanding the relationship between the variables and the rational number to derive the finite nature of the solutions.

PREREQUISITES
  • Understanding of rational numbers and their properties
  • Familiarity with algebraic manipulation of equations
  • Knowledge of integer solutions in mathematical equations
  • Basic concepts of number theory
NEXT STEPS
  • Explore the derivation of integer solutions for rational equations
  • Study the implications of finite solutions in number theory
  • Investigate similar equations involving rational numbers and their solutions
  • Learn about Diophantine equations and their characteristics
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in the properties of rational equations and their integer solutions.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given a rational number, $\frac{p}{q}$, show that there are only a finite number of positive integer solutions to the equation:

$$\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$$
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Given a rational number, $\frac{p}{q}$, show that there are only a finite number of positive integer solutions to the equation:

$$\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$$

without loss of generality we can assume x <= y so $\frac{1}{x} >=\frac{1}{y}$ Even if we require ordered pair number number of solutions cannot be > double of the case x <= y

further there exists n such that $\frac{1}{n+1} < \frac{p}{q} < \frac{1}{n}$ so $\frac{1}{x} > \frac{1}{2n}$

there are a finite values x < 2n and x >n) that satisfy the criteria hence finite solutions ( I have provided the estimates with +/- 1 and not exact bound)
 
kaliprasad said:
without loss of generality we can assume x <= y so $\frac{1}{x} >=\frac{1}{y}$ Even if we require ordered pair number number of solutions cannot be > double of the case x <= y

further there exists n such that $\frac{1}{n+1} < \frac{p}{q} < \frac{1}{n}$ so $\frac{1}{x} > \frac{1}{2n}$

there are a finite values x < 2n and x >n) that satisfy the criteria hence finite solutions ( I have provided the estimates with +/- 1 and not exact bound)

Hi, kaliprasad!
Thankyou very much for your solution! Please explain how you conclude, that: $\frac{1}{x} >\frac{1}{2n}.$
 
lfdahl said:
Hi, kaliprasad!
Thankyou very much for your solution! Please explain how you conclude, that: $\frac{1}{x} >\frac{1}{2n}.$

$\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$

if ( a + b = 2c) and a > b then a > c else a + b < c + c or a +b < 2c

based on above $\frac{1}{x} >\frac{1}{2n}$
 
kaliprasad said:
$\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$

if ( a + b = 2c) and a > b then a > c else a + b < c + c or a +b < 2c

based on above $\frac{1}{x} >\frac{1}{2n}$

Thankyou very much, kaliprasad for your participation and a nice solution!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
48
Views
5K