MHB A finite number of positive integer solutions 1/x+1/y=p/q

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given a rational number, $\frac{p}{q}$, show that there are only a finite number of positive integer solutions to the equation:

$$\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$$
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Given a rational number, $\frac{p}{q}$, show that there are only a finite number of positive integer solutions to the equation:

$$\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$$

without loss of generality we can assume x <= y so $\frac{1}{x} >=\frac{1}{y}$ Even if we require ordered pair number number of solutions cannot be > double of the case x <= y

further there exists n such that $\frac{1}{n+1} < \frac{p}{q} < \frac{1}{n}$ so $\frac{1}{x} > \frac{1}{2n}$

there are a finite values x < 2n and x >n) that satisfy the criteria hence finite solutions ( I have provided the estimates with +/- 1 and not exact bound)
 
kaliprasad said:
without loss of generality we can assume x <= y so $\frac{1}{x} >=\frac{1}{y}$ Even if we require ordered pair number number of solutions cannot be > double of the case x <= y

further there exists n such that $\frac{1}{n+1} < \frac{p}{q} < \frac{1}{n}$ so $\frac{1}{x} > \frac{1}{2n}$

there are a finite values x < 2n and x >n) that satisfy the criteria hence finite solutions ( I have provided the estimates with +/- 1 and not exact bound)

Hi, kaliprasad!
Thankyou very much for your solution! Please explain how you conclude, that: $\frac{1}{x} >\frac{1}{2n}.$
 
lfdahl said:
Hi, kaliprasad!
Thankyou very much for your solution! Please explain how you conclude, that: $\frac{1}{x} >\frac{1}{2n}.$

$\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$

if ( a + b = 2c) and a > b then a > c else a + b < c + c or a +b < 2c

based on above $\frac{1}{x} >\frac{1}{2n}$
 
kaliprasad said:
$\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$

if ( a + b = 2c) and a > b then a > c else a + b < c + c or a +b < 2c

based on above $\frac{1}{x} >\frac{1}{2n}$

Thankyou very much, kaliprasad for your participation and a nice solution!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top