A finite number of positive integer solutions 1/x+1/y=p/q

Click For Summary

Discussion Overview

The discussion centers around the equation $$\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$$ where participants explore the claim that there are only a finite number of positive integer solutions for given rational numbers $\frac{p}{q}$. The scope includes mathematical reasoning and potential proofs related to this equation.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Some participants assert that for a given rational number $\frac{p}{q}$, there are only a finite number of positive integer solutions to the equation.
  • One participant expresses gratitude towards another for their contributions and proposed solutions, indicating engagement with the presented ideas.

Areas of Agreement / Disagreement

The discussion does not appear to have reached a consensus, as the initial claim is reiterated without further elaboration or counterarguments.

Contextual Notes

The discussion lacks detailed mathematical proofs or specific conditions under which the claim holds, leaving open questions regarding the assumptions involved.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given a rational number, $\frac{p}{q}$, show that there are only a finite number of positive integer solutions to the equation:

$$\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$$
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Given a rational number, $\frac{p}{q}$, show that there are only a finite number of positive integer solutions to the equation:

$$\frac{1}{x}+\frac{1}{y}=\frac{p}{q}$$

without loss of generality we can assume x <= y so $\frac{1}{x} >=\frac{1}{y}$ Even if we require ordered pair number number of solutions cannot be > double of the case x <= y

further there exists n such that $\frac{1}{n+1} < \frac{p}{q} < \frac{1}{n}$ so $\frac{1}{x} > \frac{1}{2n}$

there are a finite values x < 2n and x >n) that satisfy the criteria hence finite solutions ( I have provided the estimates with +/- 1 and not exact bound)
 
kaliprasad said:
without loss of generality we can assume x <= y so $\frac{1}{x} >=\frac{1}{y}$ Even if we require ordered pair number number of solutions cannot be > double of the case x <= y

further there exists n such that $\frac{1}{n+1} < \frac{p}{q} < \frac{1}{n}$ so $\frac{1}{x} > \frac{1}{2n}$

there are a finite values x < 2n and x >n) that satisfy the criteria hence finite solutions ( I have provided the estimates with +/- 1 and not exact bound)

Hi, kaliprasad!
Thankyou very much for your solution! Please explain how you conclude, that: $\frac{1}{x} >\frac{1}{2n}.$
 
lfdahl said:
Hi, kaliprasad!
Thankyou very much for your solution! Please explain how you conclude, that: $\frac{1}{x} >\frac{1}{2n}.$

$\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$

if ( a + b = 2c) and a > b then a > c else a + b < c + c or a +b < 2c

based on above $\frac{1}{x} >\frac{1}{2n}$
 
kaliprasad said:
$\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$

if ( a + b = 2c) and a > b then a > c else a + b < c + c or a +b < 2c

based on above $\frac{1}{x} >\frac{1}{2n}$

Thankyou very much, kaliprasad for your participation and a nice solution!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
48
Views
5K