Is $f(x) = xf(1)$ the only solution to the given functional equation?

  • Context: MHB 
  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Functional
Click For Summary
SUMMARY

The functional equation \( f(x+y+2xy) = f(x) + f(y) + 2f(xy) \) leads to the conclusion that \( f(n) = nf(1) \) for all integers \( n \). By establishing that \( f(0) = 0 \) and using induction, it is shown that \( f(2017x) = 2017f(x) \) holds for all integers \( x \). The discussion suggests that if \( f \) is continuous, this result can be extended to all real numbers, but continuity is not assumed in the problem statement.

PREREQUISITES
  • Understanding of functional equations
  • Knowledge of mathematical induction
  • Familiarity with properties of odd functions
  • Basic concepts of continuity in real analysis
NEXT STEPS
  • Explore the properties of functional equations in depth
  • Study mathematical induction techniques and their applications
  • Investigate the implications of continuity on functional equations
  • Learn about odd functions and their characteristics in mathematical contexts
USEFUL FOR

Mathematicians, students studying functional equations, and anyone interested in advanced algebraic structures and their properties.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $f:\mathbb R\to \mathbb R$ be a function satisfying $f(x+y+2xy) = f(x)+f(y) + 2f(xy)$ for all $x, y\in\mathbb R$. Then I need to show that $f(2017 x) = 2017 f(x)$ for all $x\in \mathbb R$.

I am not sure where to start. All I could note is that $f(0)=0$ which one obtains by susbtituing $x=y=0$. If $f$ is a linear functions then clearly $f$ satisfies the given condition and I suspect that these are the only candidates for $f$.
 
Mathematics news on Phys.org
If you put $y=-\frac12$, that should lead you to $f(4x) = 4f(x)$. But I don't see any way to get from $4$ to $2017$.
 
Opalg said:
If you put $y=-\frac12$, that should lead you to $f(4x) = 4f(x)$. But I don't see any way to get from $4$ to $2017$.

Assuming $f$ is an odd function, and then replacing $x$ by $-x$ and $y$ by $-y$ and adding we get
$$f(x+y+2xy) + f(-x-y+2xy) = 4f(xy) = f(4xy)$$
where the last equality is by your observation. This looks like $f(a) + f(b) = f(a+b)$ since $(x+y+2xy) + (-x-y + 2xy) = 4xy$.

So one can make some progress from here. But that is assuming if $f$ is odd. Are you able to see why $f$ should be odd?
 
Here's another approach. In the equation $f(x+y+2xy) = f(x)+f(y) + 2f(xy)$, put $(x,y) = (0,0)$ to get $f(0) = 0.$ Then put $(x,y) = (-1,-1)$ to get $f(-1) = (-1)f(1).$

Now assume as an inductive hypothesis that $f(k) = kf(1)$ for all $k$ with $-n\leqslant k\leqslant n$. Put $(x,y) = (n,-1)$ to get $f(-n-1) = f(n) + f(-1) + 2f(-n) = (-n-1)f(1).$ Next, put $(x,y) = (-n-1,-1)$ to get $f(n) = f(-n-1) + f(-1) + 2f(n+1)$, from which $2f(n+1) = 2(n+1)f(1)$ and hence $f(n+1) = (n+1)f(1)$.

That completes the inductive step, showing that $f(n) = nf(1)$ for all $n\in\Bbb{Z}$. In particular, $f(2017x) = 2017f(x)$ for all $x\in \Bbb{Z}$. But this time I don't see how to get from $\Bbb{Z}$ to $\Bbb{R}$! If you knew that $f$ was continuous, you might try to show that $f(r) = rf(1)$ for all rational $r$, and then the result would follow by continuity for all real $x$. But presumably you're not given that information.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
486
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K