A generalization of triple and higher power polylog integrals

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integrals Power
Click For Summary
SUMMARY

The discussion focuses on the generalization of triple and higher power polylogarithm integrals, specifically the integral defined as $$L^m_n(p,q)=\int^1_0 \frac{\mathrm{Li}_p(x)^m\, \mathrm{Li}_q(x)^n}{x} \, dx$$. Key results include the relationships between these integrals and the Riemann zeta function, particularly $$L^m_1(p,p-1) = \frac{\zeta(p)^{m+1}}{m+1}$$ and $$L^1_n(q-1,q) = \frac{\zeta(q)^{n+1}}{n+1}$$. The discussion also highlights the derivation of several interesting formulas involving polylogarithms and their properties, culminating in a new formula for $$\int^1_0 \frac{\mathrm{Li}_p(x) \log^2(1-x)}{x} \, dx$$.

PREREQUISITES
  • Understanding of polylogarithms, specifically $$\mathrm{Li}_p(x)$$
  • Familiarity with the Riemann zeta function $$\zeta(s)$$
  • Knowledge of integral calculus, particularly improper integrals
  • Basic concepts of series and summation techniques
NEXT STEPS
  • Study the properties of polylogarithms and their applications in number theory
  • Explore advanced techniques in evaluating integrals involving the Riemann zeta function
  • Learn about generating functions and their role in deriving series expansions
  • Investigate the relationship between polylogarithms and special functions in mathematical analysis
USEFUL FOR

Mathematicians, researchers in number theory, and anyone interested in advanced calculus and the properties of special functions, particularly polylogarithms and zeta functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Inspired by this http://mathhelpboards.com/calculus-10/powers-polylogarithms-7998.html we look at the generalization

$$L^m_n(p,q)=\int^1_0 \frac{\mathrm{Li}_p(x)^m\, \mathrm{Li}_q(x)^n}{x} \, dx $$​

This is NOT a tutorial. Any comments, attempts or suggestions are always welcomed.
 
Physics news on Phys.org
We explore some properties

\begin{align}
L^1_1(p,q) = \mathscr{H}(p,q)&= \sum_{n=1}^{p-1}(-1)^{n-1}\zeta(p-n+1)\zeta(q+n) -\frac{1}{2}\sum_{n=1}^{{p+q}-2}(-1)^{p-1}\zeta(n+1)\zeta({p+q}-n)\\ &+(-1)^{p-1}\left(1+\frac{{p+q}}{2} \right)\zeta({p+q}+1)\end{align}

Let $$n=1\,\,\, q=p-1$$

$$L^m_1(p,p-1) = \frac{\zeta(p)^{m+1}}{m+1}$$

Similarly

Let $$m=1\,\,\, p=q-1$$

$$L^1_n(q-1,q) = \frac{\zeta(q)^{n+1}}{n+1}$$

Hence we have

$$\tag{1} \, L^m_1(p,p-1)+L^1_n(q-1,q) = \frac{\zeta(p)^{m+1}}{m+1}+\frac{\zeta(q)^{n+1}}{n+1}$$

We showed that

$$ \int^1_0\frac{\mathrm{Li}_{q}(x)^3-\mathrm{Li}_{q+1}(x)^2\mathrm{Li}_{q-2}(x)}{x}\, dx = \zeta(q+1)\zeta(q)^2-\zeta(q-1)\zeta^2(q+1)$$

Which can be rewritten as

$$\tag{2} L^2_1(q,q)-L^2_1(q+1,q-2)= \zeta(q+1)\zeta(q)^2-\zeta(q-1)\zeta^2(q+1)$$

Let $m=2\,\,\, n=1$ and $p=q$ in (1) to obtain

$$ \tag{3} L^2_1(q,q-1)+ \mathscr{H} (q-1,q) = \frac{\zeta(q)^3}{3}+\frac{\zeta(q)^2}{2}$$

By adding (3) and (2) we get

\begin{align}
L^2_1(q,q)+L^2_1(q,q-1)-L^2_1(q+1,q-2)&= \frac{\zeta(q)^3}{3}+ \zeta(q+1)\zeta(q)^2-\zeta(q-1)\zeta^2(q+1)+\frac{\zeta(q)^2}{2}\\ & \,\, \, \, - \mathscr{H} (q-1,q) \end{align}
 
$$\tag{1}\int^1_0 x^{n-1} \mathrm{Li}_k(x)\, dx = (-1)^{k-1}\frac{H_{n}}{n^k}+\sum_{m\geq 0}^{k-2}(-1)^m \frac{\zeta(k-m)}{n^{m+1}}$$

Also we define the following

$$\tag{2} S_{p^m \, , \, q}\sum_{n\geq 1} \frac{(H^{(p)})^m}{n^q}$$

Using that formula we attempt to find the solution for the following

$$L^1_2(p,1)=\int^1_0 \frac{\mathrm{Li}_p(x) \log^2(1-x)}{x} \, dx$$

First we use the generating function

$$\sum_{n\geq 1}H_n x^n = -\frac{\log(1-x)}{1-x}$$

$$\sum_{n\geq 1}\frac{H_n}{n} x^n = \mathrm{Li}_2(x)+\frac{\log^2(1-x)}{2}$$

Hence we have

$$\log^2(1-x)= 2\left(\sum_{n\geq 1}\frac{H_n}{n} x^n -\mathrm{Li}_2(x)\right)$$

Consequently we have

\begin{align}
L^1_2(p,1)&=2\int^1_0 \frac{\mathrm{Li}_p(x)}{x}\left(\sum_{n\geq 1}\frac{H_n}{n} x^n - \mathrm{Li}_2(x)\right) \, dx\\
&=2\int^1_0 \mathrm{Li}_p(x) \sum_{n\geq 1}\frac{H_n}{n} x^{n-1} \, dx-2\int^1_0 \frac{\mathrm{Li}_p(x)\mathrm{Li}_2(x)}{x} \, dx\\
&=2 \sum_{n\geq 1}\frac{H_n}{n} \int^1_0 x^{n-1}\mathrm{Li}_p(x)\, dx-2 \mathscr{H} (p,2)\\
&=2 \sum_{n\geq 1}\frac{H_n}{n}\left((-1)^{p-1}\frac{H_{n}}{n^p}+2\sum_{m\geq 0}^{p-2}(-1)^m \frac{\zeta(p-m)}{n^{m+1}} \right)-2 \mathscr{H} (p,2)\\
&= 2 (-1)^{p-1}\sum_{n\geq 1}\frac{H^2_n}{n^{p+1}}+2\sum_{m\geq 0}^{p-2}(-1)^m \zeta(p-m)\sum_{n\geq 1}\frac{H_n}{n^{m+2}}-2 \mathscr{H} (p,2)\\

&=2 (-1)^{p-1}S_{1^2,\,p+1}+2\sum_{m\geq 0}^{p-2}(-1)^m \zeta(p-m)S_{1,\,m+2}-2 \mathscr{H} (p,2)
\end{align}

For remainder we know that

\begin{align}\mathscr{H}(p,q) &= \sum_{n=1}^{p-1}(-1)^{n-1}\zeta(p-n+1)\zeta(q+n) -\frac{1}{2}\sum_{n=1}^{{p+q}-2}(-1)^{p-1}\zeta(n+1)\zeta({p+q}-n)\\ &+(-1)^{p-1}\left(1+\frac{{p+q}}{2} \right)\zeta({p+q}+1) \,\,\, (3) \end{align}

$$\tag{4} S_{1,\,q}=\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)$$

And the final generalization is

$$\tag{5}\int^1_0 \frac{\mathrm{Li}_p(x) \log^2(1-x)}{x} \, dx=2 (-1)^{p-1}S_{1^2,\,p+1}+2\sum_{m\geq 0}^{p-2}(-1)^m \zeta(p-m)S_{1,\,m+2}-2 \mathscr{H} (p,2)$$

That was the most interesting formula I have ever,ever obtained. I hope it is new.
 
Last edited:
Well, I was trying to test the integral and it works fine

$$\tag{1} L^1_2(1,1) = -\int^1_0 \frac{\log^3(1-x)}{x}\, dx=\frac{\pi^4}{15}$$

$$\tag{2} L^1_2(2,1) = \int^1_0 \frac{\mathrm{Li}_2(x)\log^2(1-x)}{x}\, dx=2\zeta(2)\zeta(3)-\zeta(5)$$

$$\tag{3} L^1_2(3,1) = \int^1_0 \frac{\mathrm{Li}_3(x)\log^2(1-x)}{x}\, dx=\frac{97}{12} \zeta(6)-\zeta^2(3)-\zeta^3(2)$$
 
Congratulations, friend! It's a beauty! (Yes)(Yes)(Yes)Have you considered writing paper about this and the other Polylog integrals/series you evaluated on the other thread...? Seems a mighty worthy topic.
 
DreamWeaver said:
Congratulations, friend! It's a beauty! (Yes)(Yes)(Yes)Have you considered writing paper about this and the other Polylog integrals/series you evaluated on the other thread...? Seems a mighty worthy topic.

Hey Dw , thanks for the comment. I am working on a more generalized version. I hate publishing papers because the process takes a long time. I don't know whether it is worth it !
 
I derived an interesting formula

$$ \sum_{k\geq 1}(-1)^k H_k^{(p)}\, x^k = \frac{\mathrm{Li}_p(-x)}{1+x}$$

$$ \sum_{k\geq 1}(-1)^k H_k^{(p)}\, x^{k-1} = \frac{\mathrm{Li}_p(-x)}{x(1+x)}= \frac{\mathrm{Li}_p(-x)}{x}-\frac{\mathrm{Li}_p(-x)}{1+x} $$

Multiply through by $$\mathrm{Li}_q(x)$$

$$ \sum_{k\geq 1}(-1)^{k-1} H_k^{(p)}\, x^k\mathrm{Li}_q(x) = \frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{1+x}$$

Now take the integral $$\int^1_0$$

$$ \sum_{k\geq 1}(-1)^{k-1} H_k^{(p)}\, \int^1_0 x^k\mathrm{Li}_q(x)\, dx = \int^1_0\frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{x}\, dx -\int^1_0 \frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{1+x}\, dx$$

Ok, we know that

$$\int^1_0 x^{k-1}\mathrm{Li}_q(x)\, dx = \sum_{n\geq 1}\frac{1}{n^q(n+k)}=\mathscr{C}(q,k)$$

We already know that

$$\mathscr{C}(q , k) = \sum_{m=1}^{q-1}(-1)^{m-1}\frac{\zeta(q-m+1)}{k^m}+(-1)^{q-1}\frac{H_k}{k^q}$$

$$ \sum_{k\geq 1}(-1)^{k-1} H_k^{(p)}\left( \sum_{m=1}^{q-1}(-1)^{m-1}\frac{\zeta(q-m+1)}{k^m}+(-1)^{q-1}\frac{H_k}{k^q} \right) = \int^1_0\frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{x}\, dx -\int^1_0 \frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{1+x}\, dx$$

$$\sum_{m=1}^{q-1}(-1)^{m-1} \zeta(q-m+1) \sum_{k\geq 1} (-1)^{k-1} \frac{H_k^{(p)}} {k^m}+ (-1)^{q-1} \sum_{k\geq 1} (-1)^{k-1} \frac{H_k^{(p)} H_k}{k^q} = \int^1_0\frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{x}\, dx -\int^1_0 \frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{1+x}\, dx$$

\begin{align}
\int^1_0 \frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{x(1+x)}\, dx &= \sum_{m=1}^{q-1}(-1)^{m-1} \zeta(q-m+1) \sum_{k\geq 1} (-1)^{k-1} \frac{H_k^{(p)}} {k^m} + (-1)^{q-1} \sum_{k\geq 1} (-1)^{k-1} \frac{H_k^{(p)} H_k}{k^q}
\end{align}

It would be interesting if we can find a similar formula for positive arguments of the polylogarithm. The evaluation of alternating Euler sums is a little more challenging than the regular sums.
 
If we consider the following

$$\sum_k H_k x^k = \frac{\mathrm{Li}_p(x)}{1-x}$$

$$\sum_k H_k x^{k-1} = \frac{\mathrm{Li}_p(x)}{x}+\frac{\mathrm{Li}_p(x)}{1-x}$$

Then multiply by $$\mathrm{Li}_q(x)$$

$$\sum_k H_k \, x^{k-1} \mathrm{Li}_q(x)= \frac{\mathrm{Li}_p(x) \mathrm{Li}_q(x)}{x}+\frac{\mathrm{Li}_p(x) \mathrm{Li}_q(x)}{1-x}$$

Then if we integrate both sides $$\int^1_0 $$ we will have an obvious problem of divergence. I think there is a way to remove the singularity from both sides.

We may consider the general integral

$$\int^x_0 \frac{\mathrm{Li}_p(t) \mathrm{Li}_q(t)}{1-t} \, dt$$

Then take the limit $$x \to 1$$ which will cancel with some terms in RHS . Not sure whether that will work. Anyways , I will continue tomorrow. (Headbang)
 
Here is a rough sketch of an evaluation

$$\sum_k H_k \, x^{k-1} \mathrm{Li}_q(x)= \frac{\mathrm{Li}_p(x) \mathrm{Li}_q(x)}{x}+\frac{\mathrm{Li}_p(x) \mathrm{Li}_q(x)}{1-x}$$

$$\sum_k H_k \, \int^1_0 x^{k-1} \mathrm{Li}_q(x)\, dx= \mathscr{H}(p,q)+\int^1_0\frac{\mathrm{Li}_p(x) \mathrm{Li}_q(x)}{1-x}\, dx$$

$$\sum_k H_k \, \int^1_0 x^{k-1} \mathrm{Li}_q(x)\, dx= \mathscr{H}(p,q)-\lim_{s\to 1}\,\log(1-s)\mathrm{Li}_p(s) \mathrm{Li}_q(s)+\int^1_0\frac{\mathrm{Li}_{p-1}(x) \mathrm{Li}_q(x) \log(1-x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_p(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx$$

$$\sum_{k\geq 1} H_k^{(p)}\left( \sum_{m=1}^{q-1}(-1)^{m-1}\frac{\zeta(q-m+1)}{k^m}+(-1)^{q-1}\frac{H_k}{k^q} \right) = \mathscr{H}(p,q)-\lim_{s\to 1}\,\log(1-s)\mathrm{Li}_p(s) \mathrm{Li}_q(s)+\int^1_0\frac{\mathrm{Li}_{p-1}(x) \mathrm{Li}_q(x) \log(1-x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_p(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx$$

$$\sum_{k\geq 1} H_k^{(p)}\left( \sum_{m=2}^{q-1}(-1)^{m-1}\frac{\zeta(q-m+1)}{k^m}+(-1)^{q-1}\frac{H_k}{k^q} \right)+\zeta(q) \lim_{s \to 1}\sum_{k\geq 1}\frac{H^{(p)}_k}{k}s^k= \mathscr{H}(p,q)-\zeta(p)\zeta(q)\lim_{s\to 1}\,\log(1-s) +\int^1_0\frac{\mathrm{Li}_{p-1}(x) \mathrm{Li}_q(x) \log(1-x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_p(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx$$

\begin{align} \int^1_0\frac{\mathrm{Li}_{p-1}(x) \mathrm{Li}_q(x) \log(1-x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_p(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx &= \sum_{m=2}^{q-1}(-1)^{m-1} \zeta(q-m+1) S_{p,m} \\&+ (-1)^{q-1} \sum_{k\geq 1} \frac{H_k^{(p)} H_k}{k^q}-\mathscr{H}(p,q)+\\&\zeta(q) \lim_{s \to 1}\left( \sum_{k\geq 1}\frac{H^{(p)}_k}{k}s^k +\zeta(p)\log(1-s) \right)
\end{align}

I haven't checked whether the evaluations are correct. I still have to evaluate the limit which I hope vanishes.
 
Last edited:
  • #10
Now we will evaluate the limit. Consider the following generating function

$$\sum_{k\geq 1} H_k^{(p)} x^k = \frac{\mathrm{Li}_p(x)}{1-x}$$

Dividing by $x$ we have

$$\sum_{k\geq 1} H_k^{(p)} x^{k-1} = \frac{\mathrm{Li}_p(x)}{x}+\frac{\mathrm{Li}_p(x)}{1-x}$$

Now integrate with respect to $x$ to get

$$\sum_{k\geq 1} \frac{H_k^{(p)}}{k} x^{k}= \mathrm{Li}_{p+1}(x)+\int^x_0 \frac{\mathrm{Li}_p(x)}{1-x} \, dx$$

Now use integration by parts to obtain

$$\sum_{k\geq 1} \frac{H_k^{(p)}}{k} x^{k}= \mathrm{Li}_{p+1}(x)-\log(1-x) \mathrm{Li}_p(x) +\int^x_0 \frac{\mathrm{Li}_{p-1}(t) \log(1-t)}{t} \, dx$$

$$\sum_{k\geq 1} \frac{H_k^{(p)}}{k} x^{k}+\log(1-x) \mathrm{Li}_p(x) = \mathrm{Li}_{p+1}(x)+\int^x_0 \frac{\mathrm{Li}_{p-1}(t) \log(1-t)}{t} \, dx$$

Taking the limit $$x \to 1$$ we have

$$\lim_{x \to 1}\left( \sum_{k\geq 1}\frac{H^{(p)}_k}{k}x^k+\mathrm{Li}_p(x)\log(1-x) \right)= \zeta(p+1)-\mathscr{H}(p-1,1)$$

To conclude we have the general formula

\begin{align} \int^1_0\frac{\mathrm{Li}_{p-1}(x) \mathrm{Li}_q(x) \log(1-x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_p(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx &= \sum_{m=2}^{q-1}(-1)^{m-1} \zeta(q-m+1) S_{p,m} \\&+ (-1)^{q-1} \sum_{k\geq 1} \frac{H_k^{(p)} H_k}{k^q}-\mathscr{H}(p,q)\\& +\zeta(q) \zeta(p+1)-\zeta(q)\mathscr{H}(p-1,1)
\end{align}

For the special case $$p=q $$ we get

\begin{align}2\int^1_0\frac{\mathrm{Li}_q(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx &= \sum_{m=2}^{q-1}(-1)^{m-1} \zeta(q-m+1) S_{q,m} + (-1)^{q-1} \sum_{k\geq 1} \frac{H_k^{(q)} H_k}{k^q}-\mathscr{H}(q,q)\\& +\zeta(q) \zeta(q+1)-\zeta(q)\mathscr{H}(q-1,1)
\end{align}
 
Last edited:
  • #11
Great stuff, Zaid! :D Keep 'em coming...:cool:
 
  • #12
In the previous post we proved that

\begin{align}2\int^1_0\frac{\mathrm{Li}_q(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx &= \sum_{m=2}^{q-1}(-1)^{m-1} \zeta(q-m+1) S_{q,m} + (-1)^{q-1} \sum_{k\geq 1} \frac{H_k^{(q)} H_k}{k^q}-\mathscr{H}(q,q)\\& +\zeta(q) \zeta(q+1)-\zeta(q)\mathscr{H}(q-1,1)
\end{align}

Letting $q=3$ we have

\begin{align}-2\int^1_0\frac{\mathrm{Li}_3(x) \mathrm{Li}_{2}(x) \mathrm{Li}_1(x)}{x}\, dx &= - \zeta(2) S_{3,2} +\sum_{k\geq 1} \frac{H_k^{(3)} H_k}{k^3}-\mathscr{H}(3,3)\\& +\zeta(3) \zeta(4)-\zeta(3)\mathscr{H}(2,1)
\end{align}

We already now that

$$\int^1_0\frac{\mathrm{Li}_{q}(x)^3}{x}\, dx = \zeta(q+1)\zeta(q)^2-2\int^1_0 \frac{\mathrm{Li}_{q-1}(x)\mathrm{Li}_{q}(x)\mathrm{Li}_{q+1}(x)}{x}\, dx$$

Hence we have

$$\int^1_0\frac{\mathrm{Li}_{2}(x)^3}{x}\, dx = \zeta(3)\zeta(2)^2-2\int^1_0 \frac{\mathrm{Li}_{1}(x)\mathrm{Li}_{2}(x)\mathrm{Li}_{3}(x)}{x}\, dx$$

$$L^2_1(2,2) = \int^1_0\frac{\mathrm{Li}_{2}(x)^3}{x}\, dx = \zeta(3)\zeta(2)^2- \zeta(2) S_{3,2} +\sum_{k\geq 1} \frac{H_k^{(3)} H_k}{k^3}-\mathscr{H}(3,3)+\zeta(3) \zeta(4)-\zeta(3)\mathscr{H}(2,1)$$
 
  • #13
Consider the following general from

\begin{align}2\int^1_0\frac{\mathrm{Li}_q(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx &= \sum_{m=2}^{q-1}(-1)^{m-1} \zeta(q-m+1) S_{q,m} + (-1)^{q-1} \sum_{k\geq 1} \frac{H_k^{(q)} H_k}{k^q}-\mathscr{H}(q,q)\\& +\zeta(q) \zeta(q+1)-\zeta(q)\mathscr{H}(q-1,1)
\end{align}

Now, let $q=2$ then

\begin{align}-2\int^1_0\frac{\mathrm{Li}_2(x) \log^2(1-x)}{x}\, dx &= - \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^2}-\mathscr{H}(2,2)+\zeta(2) \zeta(3)-\zeta(2)\mathscr{H}(1,1)
\end{align}

\begin{align} \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^2}=2L^1_2(1,2)-\mathscr{H}(2,2)+\zeta(2) \zeta(3)-\zeta(2)\mathscr{H}(1,1)
\end{align}

Eventually we have the result

$$\sum_{k\geq 1}\frac{H_k^{(2)}H_k }{k^2}=\zeta(2)\zeta(3)+\zeta(5)$$​

We already know that

$$\sum_{k\geq 1}\frac{H_k^{(3)}}{k^2}+\sum_{k\geq 1}\frac{H_k^{(2)}}{k^3}=\zeta(2)\zeta(3)+\zeta(5)$$

Hence we have

$$\sum_{k\geq 1}\frac{H_k^{(3)}}{k^2}+\sum_{k\geq 1}\frac{H_k^{(2)}}{k^3}=\sum_{k\geq 1}\frac{H_k^{(2)}H_k^{(1)} }{k^2}$$​
 
  • #14
Consider the following general case

$$\int^1_0\frac{\mathrm{Li}_q(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx$$

Integrate by parts

$$\int^1_0\frac{\mathrm{Li}_q(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx=-\zeta(2)\zeta(q-1)\zeta(q)+\int^1_0\frac{ \mathrm{Li}_{q-1}(x)^2 \mathrm{Li}_2(x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_q(x) \mathrm{Li}_{q-2}(x) \mathrm{Li}_2(x)}{x}\, dx$$

Put $q=4$ to get

$$\int^1_0\frac{\mathrm{Li}_4(x) \mathrm{Li}_{3}(x) \log(1-x)}{x}\, dx=-\zeta(2)\zeta(3)\zeta(4)+\frac{\zeta(3)^3}{3}+\int^1_0\frac{\mathrm{Li}_4(x) \mathrm{Li}_2(x)^2}{x}\, dx$$

So we get

$$\int^1_0\frac{\mathrm{Li}_4(x) \mathrm{Li}_2(x)^2}{x}\, dx=\frac{\zeta(3)^3}{3}-\zeta(2)\zeta(3)\zeta(4)-\int^1_0\frac{\mathrm{Li}_4(x) \mathrm{Li}_{3}(x) \log(1-x)}{x}\, dx$$

$$\int^1_0\frac{\mathrm{Li}_4(x) \mathrm{Li}_2(x)^2}{x}\, dx=\frac{\zeta(3)^3}{3}-\zeta(2)\zeta(3)\zeta(4)-\frac{1}{2} \left( \sum_{m=2}^{3}(-1)^{m-1} \zeta(5-m) S_{4,m}- \sum_{k\geq 1} \frac{H_k^{(4)} H_k}{k^4}-\mathscr{H}(4,4) +\zeta(4) \zeta(5)-\zeta(4)\mathscr{H}(3,1) \right)$$
 
  • #15
To finish the last result we need the following results found easily by our previous generalizations

$$\mathscr{H}(3,1)=-\zeta(2)\zeta(3)+3\zeta(5)$$

$$\mathscr{H}(4,4)=2\zeta(4)\zeta(5) +2\zeta(2)\zeta(7) − 5\zeta(9)$$

For the Euler sums we will refer to the following paper which gives a general formula for $$p+q$$ is odd due to Browein .

Finish up later when I have time.
 
Last edited:
  • #16
If we consider again the formula

\begin{align}\int^1_0\frac{\mathrm{Li}_{p-1}(x) \mathrm{Li}_q(x) \log(1-x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_p(x) \mathrm{Li}_{q-1}(x) \log(1-x)}{x}\, dx &= \sum_{m=2}^{q-1}(-1)^{m-1} \zeta(q-m+1) S_{p,m} \\&+ (-1)^{q-1} \sum_{k\geq 1} \frac{H_k^{(p)} H_k}{k^q}-\mathscr{H}(p,q)\\& +\zeta(q) \zeta(p+1)-\zeta(q)\mathscr{H}(p-1,1) \end{align}

Then letting $$p=2,q=3$$ yields

$$-\int^1_0\frac{ \mathrm{Li}_3(x) \log^2(1-x)}{x}\, dx+\int^1_0\frac{\mathrm{Li}_2(x)^2 \log(1-x)}{x}\, dx = -\zeta(2) S_{2,2} + \sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3}-\mathscr{H}(2,3)+ \zeta^2(3)-\zeta(3) \mathscr{H}(1,1)$$

Hence we have

$$\sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} = -\int^1_0\frac{ \mathrm{Li}_3(x) \log^2(1-x)}{x}\, dx+\zeta(2) S_{2,2} + \mathscr{H}(2,3)-\zeta^2(3)+\zeta(3) \mathscr{H}(1,1)+\frac{\zeta(2)^3}{3}$$

Now we use that

$$\int^1_0\frac{ \mathrm{Li}_3(x) \log^2(1-x)}{x}\, dx=\frac{97}{12} \zeta(6)-\zeta^2(3)-\zeta^3(2)$$

$$S_{2,2}=\frac{7}{4}\zeta(4)$$

$$\mathscr{H}(2,3)=\frac{\zeta(3)^2}{2}$$

$$\mathscr{H}(1,1)=2\zeta(3)$$

So we have the interesting result

$$\sum_{k\geq 1} \frac{H_k^{(2)} H_k}{k^3} =- \frac{97}{12} \zeta(6)+\frac{7}{4}\zeta(4)\zeta(2) + \frac{5}{2}\zeta(3)^2+\frac{2}{3}\zeta(2)^3$$​
 
  • #17
Consider the following general case

ZaidAlyafey said:
$$\sum_{m=1}^{q-1}(-1)^{m-1} \zeta(q-m+1) \sum_{k\geq 1} (-1)^{k-1} \frac{H_k^{(p)}} {k^m}+ (-1)^{q-1} \sum_{k\geq 1} (-1)^{k-1} \frac{H_k^{(p)} H_k}{k^q} = \int^1_0\frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{x}\, dx -\int^1_0 \frac{\mathrm{Li}_p(-x)\mathrm{Li}_q(x)}{1+x}\, dx$$

Letting $$p=1$$

$$\sum_{m=1}^{q-1}(-1)^{m-1} \zeta(q-m+1) \sum_{k\geq 1} (-1)^{k-1} \frac{H_k} {k^m}+ (-1)^{q-1} \sum_{k\geq 1} (-1)^{k-1} \frac{H^2_k}{k^q} = -\int^1_0\frac{\log(1+x)\mathrm{Li}_q(x)}{x}\, dx +\int^1_0 \frac{\log(1+x)\mathrm{Li}_q(x)}{1+x}\, dx$$

Integrating the first integral by parts we got

\begin{align}\int^1_0 \frac{\log(1+x)\mathrm{Li}_q(x)+\mathrm{Li}_{q+1}(x)}{1+x}\, dx &= \sum_{m=1}^{q-1}(-1)^{m-1} \zeta(q-m+1) \sum_{k\geq 1} (-1)^{k-1} \frac{H_k} {k^m}+ (-1)^{q-1} \sum_{k\geq 1} (-1)^{k-1} \frac{H^2_k}{k^q}\\&+ \log(2)\zeta(q+1)
\end{align}

For $q=2$ we have

\begin{align}\int^1_0 \frac{\log(1+x)\mathrm{Li}_2(x)+\mathrm{Li}_{3}(x)}{1+x}\, dx &= \zeta(2) \sum_{k\geq 1} (-1)^{k-1} \frac{H_k} {k}- \sum_{k\geq 1} (-1)^{k-1} \frac{H^2_k}{k^2}+ \log(2)\zeta(3)
\end{align}
 
Last edited:
  • #18
Our next hope is finding a general formula for

$$\sum_{n\geq 1} H_n H^{(p)}_n x^n $$

Consider the following

$$\int^1_0 x^k \log^{p-1}(x) \, dx = \frac{(-1)^p p!}{k^{p}}$$

If we sum from $$k=1 \to n $$ we have

$$\frac{(-1)^{p-1}}{ p!}\sum_{k=1}^n \int^1_0 x^k \log^{p-1}(x) \, dx = H^{(p)}_n$$

Well, that might be hopeless but will try it later!
 
  • #19
I've got what is seems a systematic way of solving Higher Euler sums

According to Nielsen we have the following :

If $$f(x)= \sum_{n\geq 0}a_n x^n $$

Then we have the following $$\tag{1}\int^1_0 f(xt)\, \mathrm{Li}_2(t)\, dx=\frac{\pi^2}{6x}\int^x_0 f(t)\, dt
-\frac{1}{x}\sum_{n\geq1}\frac{a_{n-1} H_{n}}{n^2}x^n$$

Now let $a_n = H_n$ then we have the following

$$f(x)=\sum_{n\geq 1}H_n x^n=-\frac{\log(1-x)}{1-x}$$

$$-\int^1_0 \frac{\log(1-xt)}{1-xt} \mathrm{Li}_2(t)\, dt=-\frac{\pi^2}{6x}\int^x_0 \frac{\log(1-t)}{1-t} dt-\sum_{n\geq1}\frac{H_{n-1} H_{n}}{n^2}x^{n-1}$$

Hence we have the following by gathering the integrals and $x\to 1$

$$\sum_{n\geq1}\frac{H_{n-1} H_{n}}{n^2}=\int^1_0\frac{\log(1-x)\left(\mathrm{Li}_2(x)-\zeta(2)\right)}{1-x} dx$$

Integrating by parts we have

$$\sum_{n\geq1}\frac{H_{n-1} H_{n}}{n^2}=-\frac{1}{2}\int^1_0\frac{\log(1-x)^3}{x} dx$$

Hence we have

$$\sum_{n\geq1}\frac{ H^2_{n}}{n^2}=\sum_{n\geq1}\frac{ H_{n}}{n^3}-\frac{1}{2}\int^1_0\frac{\log(1-x)^3}{x} dx=\frac{17 \pi^4}{360}$$

I'll try to generalize the approach in the next thread.
 
Last edited:
  • #20
Here is a little bit of a generalization

Now let $a_n = H^{(p)}_n$ then we have the following

$$f(x)=\sum_{n\geq 1}H_n x^n=\frac{\mathrm{Li}_p(x)}{1-x}$$

$$\int^1_0 \frac{\mathrm{Li}_p(xt)}{1-xt} \mathrm{Li}_2(t)\, dx=\frac{\pi^2}{6x}\int^x_0 \frac{\mathrm{Li}_p(t)}{1-t} dt-\sum_{n\geq1}\frac{H^{(p)}_{n-1} H_{n}}{n^2}x^{n-1}$$

$$\int^1_0 \frac{\mathrm{Li}_p(xt)(\zeta(2)-\mathrm{Li}_2(t))}{1-xt} dt=\sum_{n\geq1}\frac{H^{(p)}_{n-1} H_{n}}{n^2}x^{n-1}$$

or

$$\int^1_0 \frac{\mathrm{Li}_p(t)(\zeta(2)-\mathrm{Li}_2(t))}{1-t} dt=\sum_{n\geq1}\frac{H^{(p)}_{n-1} H_{n}}{n^2}$$

Eventually we have

$$\sum_{n\geq1}\frac{H^{(p)}_{n} H_{n}}{n^2}=\int^1_0 \frac{\mathrm{Li}_p(t)(\zeta(2)-\mathrm{Li}_2(t))}{1-t} dt-\sum_{n\geq 1}\frac{H_n}{n^{p+2}}$$

The Euler sum seems reducible when $p$ is ODD.
 
  • #21
In our on-going journey we have to find a general formula for

$$\int^x_0 \frac{\mathrm{Li}_p(t)}{1-t}\, dt $$

This integral will have an anti-derivative if $p$ is odd or equal to $2$.

The idea is integrating by parts

\begin{align}
\int^x_0 \frac{\mathrm{Li}_p(t)}{1-t}\, dt & = \mathrm{Li}_p(x)\mathrm{Li}_1(x)-\int^x_0 \frac{\mathrm{Li}_{p-1}(t)\mathrm{Li}_1(t)}{t}\, dt\\ &=\mathrm{Li}_p(x)\mathrm{Li}_1(x)-\mathrm{Li}_{p-1}(x)\mathrm{Li}_2(x)+\int^x_0 \frac{\mathrm{Li}_{p-2}(t)\mathrm{Li}_2(t)}{t}\,dt\\&=\mathrm{Li}_p(x) \mathrm{Li}_1(x) -\mathrm{Li}_{p-1}(x)\mathrm{Li}_2(x)+\mathrm{Li}_{p-2}(x)\mathrm{Li}_3(x)-\int^x_0 \frac{\mathrm{Li}_{p-3}(t)\mathrm{Li}_3(t)}{t}\,dt\\ & = \,\,.\\ & = \,\,. \\ & = \,\,. \\&=\sum_{n=1}^k(-1)^{n-1}\mathrm{Li}_n(x)\mathrm{Li}_{p-n+1}(x)+(-1)^{k+1} \int^x_0 \frac{\mathrm{Li}_{p-k}(t)\mathrm{Li}_{k}(t)}{t}\,dt
\end{align}

Now let $p=2l-1$ hence we have

$$\sum_{n=1}^k(-1)^{n-1}\mathrm{Li}_n(x)\mathrm{Li}_{2l-n}(x)+(-1)^{k+1} \int^x_0 \frac{\mathrm{Li}_{2l-k-1}(t)\mathrm{Li}_{k}(t)}{t}\,dt$$

by letting $k=l-1$ we have

$$\sum_{n=1}^{l-1}(-1)^{n-1}\mathrm{Li}_n(x)\mathrm{Li}_{2l-n}(x)+(-1)^{l} \int^x_0 \frac{\mathrm{Li}_{l}(t)\mathrm{Li}_{l-1}(t)}{t}\,dt$$

Eventually we have

$$\sum_{n=1}^{l-1}(-1)^{n-1}\mathrm{Li}_n(x)\mathrm{Li}_{2l-n}(x)+(-1)^{l}\frac{\mathrm{Li}_l(x)^2}{2}$$

$$\int^x_0 \frac{\mathrm{Li}_{2k-1}(t)}{1-t}\, dt =\sum_{n=1}^{k-1}(-1)^{n-1}\mathrm{Li}_n(x)\mathrm{Li}_{2k-n}(x)+(-1)^{k}\frac{\mathrm{Li}_k(x)^2}{2}$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K