MHB A group of even order contains an odd number of elements of order 2

Click For Summary
A group of even order contains an odd number of elements of order 2, as demonstrated through the analysis of its structure. By defining the set of elements of order 2 as A and the complement of A in the group (excluding the identity) as S, it is shown that S consists of nonidentity elements that do not equal their inverses, resulting in an even number of elements. Since the total number of nonidentity elements in the group is odd, it follows that A must be odd to maintain the overall parity. The conclusion is reached through the equation |G| = 1 + |A| + |S|, confirming that |A| is indeed odd. This reasoning clarifies the relationship between group order and the count of elements of order 2.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

"Show that a group of even order contains an odd number of elements of order $2$."

We know that the order of an element of a finite group divides the order of the group.

Since, the order of the group is even, there are elements of order $2$.

But how can I show that the number of these elements is odd?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

"Show that a group of even order contains an odd number of elements of order $2$."

We know that the order of an element of a finite group divides the order of the group.

Since, the order of the group is even, there are elements of order $2$.

But how can I show that the number of these elements is odd?? (Wondering)

Let $G$ be your group, with identity $e$. Let $A$ be the set of all elements of $G$ of order 2. Let $S$ be the complement of $A$ in $G - \{e\}$. Then $S$ consists of all the nonidentity elements $a \in G$ such that $a \neq a^{-1}$. By pairing every nonidentity element with its inverse, we observe that $S$ has an even number of elements. So since $G - \{e\}$ has odd order, it follows that $A$ has an odd number of elements.
 
Last edited:
Euge said:
Let $G$ be your group, with identity $e$. Let $A$ be the set of all elements of $G$ of order 2. Let $S$ be the complement of $A$ in $G - \{e\}$. Then $S$ consists of all the nonidentity elements $a \in G$ such that $a \neq a^{-1}$. By pairing every nonidentity element with its inverse, we observe that $S$ has an even number of elements. So since $G - \{e\}$ has even order, it follows that $A$ has an odd number of elements.

$G -\{e\}$ has an odd number of elements, since $G$ is of even order.

$|G| = 1 + |A| + |S|$

Since $|G|$ is even, and $|S|$ is even, it follows that:

$|G| - |S| = 1 + |A|$ is likewise even. Thus:

$|A| = |G| - |S| - 1$ is odd.

(It's probably a simple typo, but I thought the OP should be absolutely clear on this).
 
Deveno said:
$G -\{e\}$ has an odd number of elements, since $G$ is of even order.

$|G| = 1 + |A| + |S|$

Since $|G|$ is even, and $|S|$ is even, it follows that:

$|G| - |S| = 1 + |A|$ is likewise even. Thus:

$|A| = |G| - |S| - 1$ is odd.

(It's probably a simple typo, but I thought the OP should be absolutely clear on this).

Yes, it was a typo. Thanks, I've made the correction.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
437
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 26 ·
Replies
26
Views
773
  • · Replies 1 ·
Replies
1
Views
456
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
804