(adsbygoogle = window.adsbygoogle || []).push({}); Definitions:A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis B for V such that [tex][T]_B[/tex] is a diagonal matrix. A square matrix A is called diagonalizable if [tex]L_A[/tex] is diagonalizable.

We want to determine when a linear operator T on a finite-dimensional vector space V is diagonalizable and, if so, how to obtain an ordered basis B = [tex]{v_1, v_2, ... , v_n}[/tex] for V such that [tex][T]_B[/tex] is a diagonal matrix. Note that, if D = [tex][T]_B[/tex] is a diagonal matrix, then for each vector [tex]v_j[/tex] in B, we have

[tex]T(v_j)[/tex] = [SUMMATION: from i = 1 to n][tex]D_i_jv_i[/tex] = [tex]D_j_jv_j[/tex] = [tex](lambda_j)v_j[/tex]

where (lambda_j) = Djj.

Questions:Could someone explain the following:

1. [tex]T(v_j)[/tex] = [SUMMATION: from i = 1 to n][tex]D_i_jv_i[/tex]

2. And maybe touch upon the other two equality relation in the line above.

Thanks,

JL

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A linear operator T on a finite-dimensional vector space

**Physics Forums | Science Articles, Homework Help, Discussion**