# Question about an eigenvalue problem: range space

• I

## Main Question or Discussion Point

A theorem from Axler's Linear Algebra Done Right says that if 𝑇 is a linear operator on a complex finite dimensional vector space 𝑉, then there exists a basis 𝐵 for 𝑉 such that the matrix of 𝑇 with respect to the basis 𝐵 is upper triangular.
In the proof, he defines U=range(T-𝜆I) (as we have proved atleast one eigenvalue must exist)and says that this is invariant under T.
First I want understand what the range space is here. Suppose we are in 2D and I choose some basis consisting on an eigenvector(ev) and another free vector(v): ( ev, v) Now this v can be anything not necessarily an eigenvector. So there are many possibilities. Are all contained in U? U can have dimension 1 but all these possibilities are not linearly independent so what exactly is U? Is it a set of all vectors not in the span of ev? Does this not conflict with U having dimension 1?
He then proves this by saying if u belongs to U then Tu=(T-𝜆I)u + Tu and both (T-𝜆I)u and Tu belong to U. But if I had chosen a non-eigenvalue for my basis, then Tu does not scale it so it is mapped to some other span. Therefore I'm guessing U is a set.
Any other comments about (T-𝜆I)v would be appreciated. How to think of it in the context of our original T? (I know the null space is the eigenvector)

Related Linear and Abstract Algebra News on Phys.org
Stephen Tashi