Why is there a probability paradox in this bag of balls?

  • Context: MHB 
  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Paradox Probability
Click For Summary
SUMMARY

The discussion centers on a probability paradox involving a bag containing two balls, which can be either black or white. Initially, the bag has three possible combinations: BB, BW, and WW, each with a probability of 1/3. After adding a black ball, the probabilities shift, leading to a conclusion that the bag must contain one black and one white ball based on the calculated probability of drawing a black ball, which is 2/3. The paradox arises from the misinterpretation of the initial conditions and the outcomes after adding the black ball.

PREREQUISITES
  • Understanding of basic probability theory
  • Familiarity with conditional probability
  • Knowledge of expected value concepts
  • Ability to interpret probability distributions
NEXT STEPS
  • Study the concept of conditional probability in depth
  • Learn about expectation and its applications in probability
  • Explore common probability paradoxes and their resolutions
  • Investigate Bayesian probability and its implications in real-world scenarios
USEFUL FOR

Mathematicians, statisticians, educators, and anyone interested in probability theory and its paradoxes will benefit from this discussion.

soroban
Messages
191
Reaction score
0

A bag contains two balls.
Either ball can be black or white.

Without drawing any balls, determine the colors of the balls.Solution

The bag could contain any of three contents, each with probabiity \tfrac{1}{3}.

. . \boxed{B B} \qquad \boxed{BW} \qquad \boxed{WW}

Add a black ball to the bag.
The resulting contents are

. . \boxed{BB \,B} \qquad \boxed{BW\,B} \qquad \boxed {WW\,B}Consider the probability of drawing a black ball.

Then: .P(B) \;=\;(\tfrac{1}{3})(\tfrac{3}{3}) + (\tfrac{1}{3})(\tfrac{2}{3}) + (\tfrac{1}{3})(\tfrac{1}{3}) \;=\;\tfrac{6}{9} \;=\;\tfrac{2}{3}Since the probability of drawing a black ball is \tfrac{2}{3}.
. . there must be 2 black and 1 white ball in the bag.

Therefore, before the black ball was added,
. . the bag must have contained one black and one white ball.
 
Physics news on Phys.org
My head hurts. (Crying)

-Dan
 
The trick is in your first statement,
soroban said:
The bag could contain any of three contents, each with probabiity \tfrac{1}{3}.
.

There are four equally likely outcomes, WW, WB, BW, and BB. Each has probability 1/4.
 
HallsofIvy said:
The trick is in your first statement,
.

There are four equally likely outcomes, WW, WB, BW, and BB. Each has probability 1/4.
his makes no difference.
We still add one black ball.

\text{We have: }\;WW\!B,\;W\!BB,\;BW\!B,\;BBB

\text{Then we have:}
. . \begin{array}{cccccc}<br /> P(B|WW\!B) &amp;=&amp; \frac{1}{4}\cdot \frac{1}{3} &amp;=&amp; \frac{1}{12} \\<br /> P(B|W\!BB) &amp;=&amp; \frac{1}{4} \cdot \frac{2}{3} &amp;=&amp; \frac{1}{6} \\<br /> P(B|BW\!B) &amp;=&amp; \frac{1}{4} \cdot \frac{2}{3} &amp;=&amp; \frac{1}{6} \\<br /> P(B|BBB) &amp;=&amp; \frac{1}{4} \cdot \frac{3}{3} &amp;=&amp; \frac{1}{4} \end{array}

\text{Therefore: }\;P(B) \;=\;\tfrac{1}{12} + \tfrac{1}{6}+\tfrac{1}{6} + \tfrac{1}{4} \;=\;\frac{2}{3}

THe "proof" still holds . . . LOL!
 
Nice conundrum! :)

I believe we've found the expectation, or average if you will, of the number of white and black balls.
 

Hello, ILS!

You've discovered the truth behind this apparent paradox.
This is indeed a matter of expectation, not actual content.

Consider the original bag with two balls
The bag could contain any of three contents, each with probability \tfrac{1}{3}.
. . \boxed{BB}\quad \boxed{BW} \quad \boxed{WW}

Consider the probability of drawing a black ball.,

P(B) \;=\;\left(\tfrac{1}{3}\right)\left(\tfrac{2}{2}\right) + \left(\tfrac{1}{3}\right)\left(\tfrac{1}{2}\right) + \left(\tfrac{1}{3}\right)\left(\tfrac{0}{2}\right) \;=\; \frac{1}{2}

We would NOT conclude that the bag must contain one black and one white ball.
But that is exactly what we did with the bag with three balls.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
4K
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K