murshid_islam said:
A general question about limits (just to check if I understood it):
if we wanted to find the limit of f(x) as ##x \rightarrow -\infty## (instead of ##+\infty##), should we find ##N(\varepsilon)## such that |f(x) - the limit| ##< \varepsilon## for all ## x < N(\varepsilon)## instead of ##x > N(\varepsilon)##.
##\lim_{x \to a}f(x)=c## means that for any sequence ##(x_n)\longrightarrow a## we have ##\lim_{x_n \to \infty}f(x_n)=c.## Here ##a,c\in \mathbb{R}\cup \{\pm \infty\}.## The ##n## are only a numbering of the sequence, i.e. it makes no sense to count them by negative numbers.
If ##|c|<\infty## is finite, then we have: For any sequence ##(x_n)\longrightarrow a## which converges to ##a##, and any given, requested approximation ##\varepsilon>0##, there is an ##N(\varepsilon)## such that ##|f(x_n)-c|<\varepsilon## for all ##n>N(\varepsilon).## Whether ##a## is infinitely positive, finite, or infinitely negative is irrelevant here; only that our (arbitrary) sequence ##(x_n)## converges to ##a.##
If ##c\in \{\pm \infty\}##, then we have again an arbitrary sequence ##(x_n)\longrightarrow a##, for which the following holds: For any finite boundary ##K## there is a sequence index ##N(K)##, such that ##f(x_n) >K## for all ##n>N(K)##, in case ##c=+\infty##, and ##f(x_n) < K## for all ##n>N(K)##, in case ##c=-\infty.##
If you forget about the function here, then the same definitions apply to ##(x_n) \longrightarrow a.##
The indexing ##n=1,2,3,\ldots## is always positive. Sure, you may count by negative numbers, but that would only be unnecessarily confusing.
Continuity of the function ##f## and the ##\varepsilon-\delta## definition in comparison to the sequence definition of continuity is a different subject. Here we have only sequences.