I am puzzled by the following infinite product:(adsbygoogle = window.adsbygoogle || []).push({});

Let B > A

A - B = [A^(1/2) + B^(1/2)] * [A^(1/2) - B^(1/2)]

= [A^(1/2) + B^(1/2)] * [A^(1/4) + B^(1/4)] * [A^(1/4) - B^(1/4)]

=[A^(1/2) + B^(1/2)] * [A^(1/4) + B^(1/4)] * [A^(1/8) + B^(1/8)] * [A^(1/8) - B^(1/8)]

etc.

Continuing the obvious expansion into an infinite product produces a sequence of terms none of which are negative. However, since B > A then A - B is a negative value. How can a infinite product of terms greater than zero produce a negative value? Surely there is a "simple" explanation.

Thanks for any comments.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A question about an infinite product

**Physics Forums | Science Articles, Homework Help, Discussion**