A question about cardinalities

  • Context: High School 
  • Thread starter Thread starter phil335
  • Start date Start date
  • Tags Tags
    Infinity
Click For Summary
SUMMARY

This discussion centers on the concept of cardinalities and the nature of infinity in mathematics. It establishes that the cardinality of whole numbers is aleph null, while the cardinality of non-terminating decimals is the cardinality of the continuum, which is greater than aleph null. The conversation also touches on Russell's paradox and the distinction between bounded and unbounded comprehension, concluding that unbounded comprehension leads to contradictions and should be rejected. The existence of infinite infinities is affirmed, with at least aleph null infinities being recognized.

PREREQUISITES
  • Understanding of cardinality, specifically aleph null and continuum
  • Familiarity with power sets and their properties
  • Knowledge of Russell's paradox and its implications in set theory
  • Concepts of bounded and unbounded comprehension in mathematics
NEXT STEPS
  • Research the implications of aleph null and continuum in set theory
  • Explore the concept of power sets and their cardinalities
  • Study Russell's paradox and its impact on modern set theory
  • Investigate the differences between bounded and unbounded comprehension
USEFUL FOR

Mathematicians, students of set theory, and anyone interested in the philosophical implications of infinity and cardinality in mathematics.

phil335
Messages
1
Reaction score
0
TL;DR
a question about infinity
If there are an infinite number of whole numbers, and an infinite number of decimals between any two whole numbers, and an infinite number of decimals in between any two decimals, does that mean that there are infinite infinities? And an infinite number of those infinities? And an infinite number of those infinities? And an infinite number of those infinities? And an infinite number of those infinities? And… (Infinitely times. And that infinitely times. and that infinitely times. and that infinitely times. And..)...

 
Physics news on Phys.org
phil335 said:
TL;DR Summary: a question about infinity

If there are an infinite number of whole numbers, and an infinite number of decimals between any two whole numbers, and an infinite number of decimals in between any two decimals, does that mean that there are infinite infinities? And an infinite number of those infinities? And an infinite number of those infinities? And an infinite number of those infinities? And an infinite number of those infinities? And… (Infinitely times. And that infinitely times. and that infinitely times. and that infinitely times. And..)...

Yes.

If we have a set ##X## with infinitely many elements ##|X|## then its power set ##P(X)##, i.e. the set of all subsets of ##X## has ##|P(x)|=2^{|X|}## many elements which is strictly bigger than ##|X|## because ##P(X)## contains all subsets ##\{x\}\in P(X)## for ##x\in X## and many more sets. There is no one-on-one map between ##X## and ##P(X).##

It is not clear whether there is another proper infinity class ##c(X)## between them, i.e. whether
$$
|X| \leq c(X) \leq |P(X)|=2^{|X|}
$$
implies ##|X|=c(X)## or ##c(X)=2^{|X|}## or whether this is not the case.
 
Last edited:
Look up "aleph null" and go from there.
 
  • Like
Likes   Reactions: FactChecker
phil335 said:
TL;DR Summary: a question about infinity

If there are an infinite number of whole numbers,
The cardinality of the whole numbers is normally taken as aleph null.
phil335 said:
and an infinite number of decimals between any two whole numbers
The cardinality of the set of terminating decimals between any two whole numbers is also aleph null.
The cardinality of the set of not necessarily terminating decimals between any two whole numbers is the cardinality of the continuum -- the cardinality of the power set of the naturals.

phil335 said:
and an infinite number of decimals in between any two decimals
Again, the cardinality of the set of terminating decimals between any two distinct decimals is aleph null while the cardinality of the set of non-terminating decimals between them is the cardinality of the continuum.
phil335 said:
does that mean that there are infinite infinities?
There are at least aleph null infinities. Because for each infinite cardinality there is an obvious successor.

However, I am not entirely sure that the cardinality of the set of all cardinalities is a coherent notion.
 
How many elements are there in the set of all elements that are not part of a set?
 
DaveC426913 said:
How many elements are there in the set of all elements that are not part of a set?
Have you been exposed to Russell's paradox and the distinction between bounded and unbounded comprehension?

Bounded comprehension or the Axiom Schema of specification says that if you have a set and a predicate (a yes/no function that operates on set members) then a set that contains exactly those set members that satisfy the predicate exists.

Unbounded comprehension is pretty much the same thing. But it does not require a set as a starting point. Just the predicate. It would assert that if you have a predicate then the set of all elements that satisfy the predicate exists. Naively, this seems sensible enough. Generations of mathematicians were perfectly willing to accept this idea.

The problem with unbounded comprehension is Russell's paradox. Let the predicate be "does not contain itself as a member" and you have the set of all sets that do not contain themselves. To avoid the paradox, one approach is to accept only bounded comprehension.

Your question above uses unbounded comprehension. So we reject it.
 
  • Like
Likes   Reactions: DaveC426913 and fresh_42

Similar threads

  • · Replies 20 ·
Replies
20
Views
1K
  • · Replies 64 ·
3
Replies
64
Views
5K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 86 ·
3
Replies
86
Views
9K