- #1
shakgoku
- 29
- 1
1. A gas molecules of mass m are in thermodynamic equilibrium at a temperature T.
If [tex]v_{x},v_{y},v_{z}[/tex] are the components of velocity v, then the mean value of [tex](v_{x}-{\alpha} {v_{y}}+{\beta} {v_{z}})^2[/tex] is:
a.[tex](1+\alpha^2+\beta^2)\frac{k_{b}T}{m}[/tex]
b.[tex](1-\alpha^2+\beta^2)\frac{k_{b}T}{m}[/tex]
c. [tex](\beta^2-\alpha^2)\frac{k_{b}T}{m}[/tex]
d.[tex](\alpha^2+\beta^2)\frac{k_{b}T}{m}[/tex]
[tex][v_{rms} \sqrt{\frac{3k_{b}T}{m}}[/tex]
[tex]K.E = \frac{3k_{b}T}{2}[/tex]
If [tex]v_{x},v_{y},v_{z}[/tex] are the components of velocity v, then the mean value of [tex](v_{x}-{\alpha} {v_{y}}+{\beta} {v_{z}})^2[/tex] is:
a.[tex](1+\alpha^2+\beta^2)\frac{k_{b}T}{m}[/tex]
b.[tex](1-\alpha^2+\beta^2)\frac{k_{b}T}{m}[/tex]
c. [tex](\beta^2-\alpha^2)\frac{k_{b}T}{m}[/tex]
d.[tex](\alpha^2+\beta^2)\frac{k_{b}T}{m}[/tex]
Homework Equations
:[/B][tex][v_{rms} \sqrt{\frac{3k_{b}T}{m}}[/tex]
[tex]K.E = \frac{3k_{b}T}{2}[/tex]
Last edited: