MHB A question on "Change of bound variables" Theorem (predicate logic)

Click For Summary
The discussion focuses on the process of renaming bound variables in predicate logic, particularly in relation to Theorem 2.5.6. It explains that when dealing with a formula containing both free and bound variables, one can select a fresh variable name to replace a bound variable, ensuring it does not conflict with free variables. An example illustrates this process, demonstrating how to apply the theorem to achieve an equivalent formula by renaming bound variables. The key takeaway is that renaming bound variables simplifies the formula and reduces variable overlap. This method is essential for maintaining logical equivalence in predicate logic.
Mathelogician
Messages
35
Reaction score
0
Hi all;
I need some clarification in red part; in how it is deduced from the theorem 2.5.6!
I know how the blue is deduced from the theorem but don't even know how to get blue form red in practice!(No algorithm is suggested...)
Anyway, any explanation is thanked...
Regards.
 

Attachments

  • Q1.png
    Q1.png
    20.5 KB · Views: 148
Physics news on Phys.org
Given a formula $\varphi$, we have two sets of variables: those that occur free in $\varphi$ and those that occur bound in $\varphi$. These two sets may have a nonempty intersection. We cannot do anything with free variables, but we can rename bound ones. So, for each bound variable $x$ select a new name that does not occur free and is free for $x$ and replace the variable with this name. It is often easier to select a completely new (called "fresh") variable name that does not occur in the original formula.

For example, let $\psi$ be \[x=0\lor\forall x\exists u\,f(x)=g(u,v)\] Then $FV(\psi)=\{x,v\}$ and $BV(\psi)=\{x,u\}$, so $FV(\psi)\cap BV(\psi)=\{x\}$. We would like to rename the bound $x$ by applying Theorem 2.5.6 to the right disjunct of $\psi$, i.e., to $\forall x\,\varphi[x/z]$ where $\varphi$ is $\exists u\,f(z)=g(u,v)$. We choose a new name for $x$, e.g., $y$, which is different from all variables in $\psi$. Then $x,y$ are free for $z$ in $\varphi$ and $x,y\notin FV(\varphi)$. Therefore, we can apply Theorem 2.5.6 to get $\models \forall x\,\varphi[x/z] \leftrightarrow \forall y\,\varphi[y/z]$, i.e., \[\models(\forall x\exists u\,f(x)=g(u,v)) \leftrightarrow (\forall y\exists u\,f(y)=g(u,v))\tag{*}\]By replacing the left-hand side of (*) with the right-hand side in $\psi$, we get an equivalent formula $x=0\lor\forall y\exists u\,f(y)=g(u,v)$.

It probably takes longer to read than to understand this. The idea is simple: choose a fresh variable name and replace a bound variable with this new name; you'll get an equivalent formula. If the old bound variable also occurred free, then you have one less variable that occurred both free and bound.
 
Perfect!
As always...
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 40 ·
2
Replies
40
Views
8K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
3
Views
22K
Replies
80
Views
7K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K