What is the Constant of Motion in a Rotating Potential Field?

Click For Summary
The discussion focuses on the constant of motion in a rotating potential field, specifically analyzing the Lagrangian and the equations of motion derived from it. Participants explore the relationship between energy (E) and angular momentum (L), ultimately demonstrating that the quantity E - ωL is conserved. They clarify the interpretation of the potential V(x, t) as a scalar field dependent on the rotated coordinates, leading to a formulation that allows for the calculation of time derivatives. The conversation concludes with the identification of symmetries in the Lagrangian, confirming that the conserved quantity can be expressed as Q = H - ωLz, solidifying the understanding of the system's dynamics. The collaborative effort enhances comprehension of the mathematical framework involved in the analysis.
etotheipi
Homework Statement
A particle in 2D configuration space is subject to the potential energy $$V(\mathbf{x}, t) = V_0 (R^{-\omega t} \mathbf{x})$$ with ##R^{-\omega t}## being a rotation by angle ##- \omega t##. Show that ##E - \omega L## is a constant of motion and find the infinitesimal symmetry transformations corresponding to this quantity.
Relevant Equations
N/A
I'm getting a bit stuck here, the Lagrangian and equation of motion is$$\mathcal{L} = \frac{1}{2} m \dot{\mathbf{x}}^2 - V_0(R^{-\omega t} \mathbf{x}) \implies m\ddot{\mathbf{x}} = -\nabla_{\mathbf{x}} V_0(R^{-\omega t}\mathbf{x})$$as expected. To try and verify that the quantity ##E - \omega L## is a constant of motion I started by looking at ##E##,$$\frac{dE}{dt} = \frac{d}{dt} \left( \frac{1}{2} m \dot{\mathbf{x}}^2 + V_0(R^{-\omega t} \mathbf{x})\right) = m\dot{\mathbf{x}} \cdot \ddot{ \mathbf{x}} + \dot{\mathbf{x}} \cdot \nabla_{\mathbf{x}} V_0 (R^{-\omega t} \mathbf{x}) + \frac{\partial V_0 (R^{-\omega t} \mathbf{x})}{\partial t} = \frac{\partial V_0 (R^{-\omega t} \mathbf{x})}{\partial t}$$Then looking at ##L##,$$\frac{d (\omega L)}{dt} = -\omega \varepsilon_{ij} x^i (\nabla_{\mathbf{x}} V_0 (R^{-\omega t} \mathbf{x}))^j = -x^1 (\nabla_{\mathbf{x}} V_0(R^{-\omega t} \mathbf{x}))^2 + x^2 (\nabla_{\mathbf{x}} V_0(R^{-\omega t} \mathbf{x}))^1 $$I don't know what to do next 😮
 
Last edited by a moderator:
Physics news on Phys.org
How should one interpret the RHS of ##V(\mathbf{x}, t) = V_0 (R^{-\omega t} \mathbf{x})##? It looks suspiciously like a vector to me. Maybe I am not familiar with your notation.
 
kuruman said:
How should one interpret the RHS of ##V(\mathbf{x}, t) = V_0 (R^{-\omega t} \mathbf{x})##? It looks suspiciously like a vector to me. Maybe I am not familiar with your notation.

Here the potential ##V(\mathbf{x}, t) = V_0(\mathbf{x}_0(\mathbf{x}, t)) = V_0(R^{-\omega t} \mathbf{x})## is a scalar field which is a function of ##\mathbf{x}_0(\mathbf{x}, t)##, which is itself a function of the position vector ##\mathbf{x}## and time ##t##. So ##V_0## is a function ##V_0 : \mathbb{R}^3 \rightarrow \mathbb{R}##
 
Last edited by a moderator:
  • Like
Likes Delta2
Yes, I see it now. Thanks.
 
The notation here tends to give me a headache. :headbang: (Not your fault.) I resorted to getting my hands dirty by writing things out explicitly in terms of components. Thus, let ##(x, y)## be the Cartesian coordinates of ##\mathbf x##. So, ##V(\mathbf x, t)## may be written ##V(x, y, t)##. Let ##(u, v)## be the Cartesian coordinates of the rotated vector ##R^{-\omega t} \mathbf x##. So, ##V_0(R^{-\omega t} \mathbf x)## can be written as ##V_0(u, v)## where

## u = x \cos \omega t + y \sin \omega t##
## v = -x \sin \omega t + y \cos \omega t##

Then, ##V(x, y, t) = V_0(u, v)##.

So, you can work out ##\frac {\partial V}{\partial t}## beginning with

##\large \frac {\partial V}{\partial t} = \frac {\partial V_0}{\partial u} \frac {\partial u}{\partial t} + \frac {\partial V_0}{\partial v} \frac {\partial v}{\partial t}##

Likewise, for the torque ##\large \frac{dL}{dt}##, you can begin with

##\large \frac{dL}{dt} = y (\frac {\partial V}{\partial x}) - x (\frac {\partial V}{\partial y})##

where ##\large \frac {\partial V}{\partial x} = \frac {\partial V_0}{\partial u} \frac{\partial u}{\partial x} + \frac {\partial V_0}{\partial v} \frac{\partial v}{\partial x} ##, etc.

Not a pretty way to do it, but it seems to work out.
 
  • Like
  • Love
Likes Delta2 and etotheipi
Awesome, thanks! I was a bit hesitant to try to break everything down, but how you reformulated the functions makes it a lot easier to understand. So we have$$\frac{dE}{dt} = \frac{\partial V_0}{\partial t} = \frac{\partial V_0}{\partial u}

\left( \omega y \cos{\omega t} - \omega x \sin{\omega t}

\right) +

\frac{\partial V_0}{\partial v} \left(

-\omega x \cos{\omega t} - \omega y \sin{\omega t}

\right)$$Whilst for the second part$$\omega \frac{dL}{dt} = \omega {\varepsilon^{i}}_j x^j \partial_i V = \omega y

\left[
\frac{\partial V_0}{\partial u}\cos{\omega t} - \frac{\partial V_0}{\partial v}\sin{\omega t}

\right] -

\omega x \left[

\frac{\partial V_0}{\partial u}\sin{\omega t} + \frac{\partial V_0}{\partial v} \cos{\omega t}

\right]$$and these two are the same, so ##\frac{d}{dt} \left( E- \omega L \right) = 0##, which is neat! Now for the second part about finding the symmetries of this Lagrangian, as far as I know, we're going to look for transformations that maybe look like$$\bar{t} = t + \varepsilon T, \quad \bar{\mathbf{x}} = \mathbf{x} + (\delta \theta) \mathbf{z} \times \mathbf{x}$$that are pseudosymmetries which result in ##\delta L = \varepsilon\frac{dF}{dt}## and ##\delta L = \delta \theta \frac{dF}{dt}## respectively, with ##F## being a function of ##\mathbf{x}## or ##t##, which then implies a conserved quantity$$Q = \mathcal{H}T - \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{x}}} \cdot (\mathbf{z} \times \mathbf{x}) + F$$where ##\mathbf{z}## is the unit vector out of the plane. So we can take ##T = 1## and ##F = 0##, show that the resulting variations in the Lagrangian are correct, and then write down$$Q = \mathcal{H} - m \dot{\mathbf{x}} \cdot \mathbf{z} \times \mathbf{x} = \mathcal{H} - \mathbf{z} \cdot \mathbf{x} \times m\dot{\mathbf{x}} = \mathcal{H} - mL_z$$which is our conserved quantity. Does that approach look okay to you?

Thanks a bunch!
 
Last edited by a moderator:
etotheipi said:
Awesome, thanks! I was a bit hesitant to try to break everything down, but how you reformulated the functions makes it a lot easier to understand. So we have$$\frac{dE}{dt} = \frac{\partial V_0}{\partial t} = \frac{\partial V_0}{\partial u}

\left( \omega y \cos{\omega t} - \omega x \sin{\omega t}

\right) +

\frac{\partial V_0}{\partial v} \left(

-\omega x \cos{\omega t} - \omega y \sin{\omega t}

\right)$$Whilst for the second part$$\omega \frac{dL}{dt} = {\varepsilon^{i}}_j x^j \partial_i V = \omega y

\left[
\frac{\partial V_0}{\partial u}\cos{\omega t} - \frac{\partial V_0}{\partial v}\sin{\omega t}

\right] -

\omega x \left[

\frac{\partial V_0}{\partial u}\sin{\omega t} + \frac{\partial V_0}{\partial v} \cos{\omega t}

\right]$$and these two are the same, so ##\frac{d}{dt} \left( E- \omega L \right) = 0##, which is neat!
Looks good.

Now for the second part about finding the symmetries of this Lagrangian, as far as I know, we're going to look for transformations that maybe look like$$\bar{t} = t + \varepsilon T, \quad \bar{\mathbf{x}} = \mathbf{x} + (\delta \theta) \mathbf{z} \times \mathbf{x}$$that are pseudosymmetries which result in ##\delta L = \varepsilon\frac{dF}{dt}## and ##\delta L = \delta \theta \frac{dF}{dt}## respectively, with ##F## being a function of ##\mathbf{x}## or ##t##

You need to specify how ##\delta \theta## is related to ##\epsilon## in order for ##L## to be invariant under the combined transformations of ##t## and ##\mathbf x##. You are looking for one symmetry transformation parameterized by ##\epsilon##. So, the transformations of both ##t## and ##\mathbf x## should be written in terms of ##\epsilon##.

which then implies a conserved quantity$$Q = \mathcal{H}T - \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{x}}} \cdot (\mathbf{z} \times \mathbf{x}) + F$$where ##\mathbf{z}## is the unit vector out of the plane.
There is something missing in the second termof ##Q##. This has to do with how ##\delta \theta## is related to ##\epsilon##.

So we can take ##T = 1## and ##F = 0##, show that the resulting variations in the Lagrangian are correct, and then write down$$Q = \mathcal{H} - m \dot{\mathbf{x}} \cdot \mathbf{z} \times \mathbf{x} = \mathcal{H} - \mathbf{z} \cdot \mathbf{x} \times m\dot{\mathbf{x}} = \mathcal{H} - mL_z$$which is our conserved quantity. Does that approach look okay to you?
The conserved quantity should be ##\mathcal{H} - \omega L_z## rather than ##\mathcal{H} - mL_z##.
 
  • Informative
Likes etotheipi
Ah, yeah that's funny I didn't notice about the ##m## instead of the ##\omega## (it's also shouldn't be there anyway, since the ##m## should have been absorbed into the ##\mathbf{p} = m\dot{\mathbf{x}}##... whoops!). I'm not sure exactly what I'm doing, but here's my second go at it!

Under the transformations ##\bar{t} = t + \varepsilon T##, and ##\bar{\mathbf{x}} = \mathbf{x} + \delta \theta \mathbf{z} \times \mathbf{x}##, our transformed Lagrangian is

$$\mathcal{L}(\bar{\mathbf{x}}, \dot{\bar{\mathbf{x}}}, \bar{t}) = \frac{1}{2}m \dot{\bar{\mathbf{x}}}^2 - V_0(R^{-\omega(t+\varepsilon T)} \bar{\mathbf{x}})$$To first order in ##\delta \theta##,$$\dot{\bar{\mathbf{x}}}^2 = \dot{\mathbf{x}}^2 + 2\delta \theta \dot{\mathbf{x}} \cdot \mathbf{z} \times \dot{\mathbf{x}} + \mathcal{O}(\delta \theta^2) = \dot{\mathbf{x}}^2 + \mathcal{O}(\delta \theta^2)$$whilst to first order in ##\delta \theta## and ##\varepsilon## - ignoring the cross term including ##\varepsilon \delta \theta## - we have for the argument of the potential energy$$R^{-\omega(t+\varepsilon T)} \bar{\mathbf{x}} \approx R^{-\omega t} [\mathbf{x} + (\delta \theta - \omega \varepsilon T) \mathbf{z} \times \mathbf{x} ]$$We can make the variation in the argument of the potential energy zero by setting ##\delta \theta = \omega \varepsilon T##, which means we now can express the transformation as a one-parameter transformation, as is required. The variation in the lagrangian under this transformation is$$\delta \mathcal{L} = \mathcal{L}(\bar{\mathbf{x}}, \dot{\bar{\mathbf{x}}}, \bar{t}) - \mathcal{L}(\mathbf{x}, \dot{\mathbf{x}}, t) \approx 0 \overset{!}{=} \varepsilon\frac{dF}{dt}$$so the transformation is a perfect symmetry, i.e. ##F=0##. Taking ##T=1##, the conserved quantity is then$$Q = \mathcal{H} T - \mathbf{p} \cdot \mathbf{K} = \mathcal{H} - m \dot{\mathbf{x}} \cdot (\omega \mathbf{z} \times \mathbf{x}) = \mathcal{H} - \omega L_z$$since the rotation transformation is ##\bar{\mathbf{x}} = \mathbf{x} + \varepsilon (\omega T \mathbf{z} \times \mathbf{x})## with a corresponding generator of rotations ##\mathbf{K} = \omega T \mathbf{z} \times \mathbf{x}##.

Phew! Does that look good? Thanks for your help, you're amazing!
 
Last edited by a moderator:
Nice. That all looks good to me.
 
  • Love
Likes etotheipi
  • #10
TSny said:
Nice. That all looks good to me.

Cool! Happy Christmas Eve, and thanks for the guidance 🥳
 
  • Like
Likes TSny

Similar threads

Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
26
Views
4K
Replies
44
Views
5K