A solution to the Laplace equation

Click For Summary
SUMMARY

The forum discussion centers on solving the Laplace equation in two dimensions with Dirichlet boundary conditions, specifically for the function defined in the first quadrant where \( f = \ln(1+x) \) at \( y=0 \) and \( f=0 \) at \( x=0 \). The user references the "Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd edition" but encounters issues with integration using Mathematica and Maxima, yielding results that do not satisfy the boundary conditions. A proposed solution involves using Maple to numerically evaluate the integral, confirming that the plotted results align with the expected boundary conditions.

PREREQUISITES
  • Understanding of the Laplace equation and its applications in two dimensions.
  • Familiarity with Dirichlet boundary conditions in mathematical physics.
  • Proficiency in using computer algebra systems such as Mathematica and Maple.
  • Knowledge of integral calculus, particularly in evaluating improper integrals.
NEXT STEPS
  • Explore the numerical methods for solving partial differential equations using Maple.
  • Study the properties and applications of Dirichlet boundary conditions in Laplace's equation.
  • Learn about the integration techniques for complex functions in Mathematica.
  • Investigate the graphical representation of solutions to PDEs and how to interpret them.
USEFUL FOR

Mathematicians, physicists, and engineers involved in solving partial differential equations, particularly those focusing on boundary value problems and numerical analysis.

Gribouille
Messages
8
Reaction score
0
Moved from technical math section, so missing the homework template
Hi,
I am looking for the solution to the quadrant problem of the Laplace equation in 2 dimensions with Dirichlet boundary conditions
\begin{equation}
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
\end{equation}
in the first quadrant ## x, y \geq 0 ## with boundary conditions ## f = \ln(1+x)## at ##y=0## and ##f=0## at ##x=0##.

I have looked at the solution in the book "Handbook of linear partial differential equations for engineers and scientists, 2nd edition, p. 800" but doing the integration with online algebra software (Mathematica, Maxima) gives nonsensical results that do not satisfy the boundary conditions.

Can you help me out with the solution?
 
Physics news on Phys.org
Please show us what you have done so far. Since you are using computer algebra software, a screen shot would be helpful.
 
From the book, the general solution is
\begin{equation}
f(x,y) = \frac{4}{\pi} x y \int_0^{\infty} \frac{g_1 (\eta) \eta \, \mathrm{d} \eta}{\left[ (y-\eta)^2 + x^2 \right] \left[ (y+\eta)^2 + x^2 \right]} + \frac{4}{\pi} x y \int_0^{\infty} \frac{g_2 (k) k \, \mathrm{d} k}{\left[ (x-k)^2 + y^2 \right] \left[ (x+k)^2 + y^2 \right]}
\end{equation}
where ##f = g_1(y)## at ##x=0## and ##f=g_2(x)## at ##y=0##. In my case, ## g_1 = 0## and ## g_2(x) = \ln(1+x)##.

I don't know how to insert screenshots, so here is the Latex code of the indefinite integral (the definite integral could not be computed)
\begin{eqnarray}
\dfrac{1}{8xy} \mathrm{i}\left(-\ln\left(-\mathrm{i}y-x+1\right)\ln\left(\left|k+\mathrm{i}y+x\right|\right)+\ln\left(-\mathrm{i}y+x+1\right)\ln\left(\left|k+\mathrm{i}y-x\right|\right)+\ln\left(\mathrm{i}y-x+1\right)\ln\left(\left|k-\mathrm{i}y+x\right|\right)-\ln\left(\mathrm{i}y+x+1\right)\ln\left(\left|k-\mathrm{i}y-x\right|\right)+\operatorname{Li}_2\left(\frac{k+\mathrm{i}y+x}{\mathrm{i}y+x-1}\right)-\operatorname{Li}_2\left(\frac{k+\mathrm{i}y-x}{\mathrm{i}y-x-1}\right)-\operatorname{Li}_2\left(-\frac{k-\mathrm{i}y+x}{\mathrm{i}y-x+1}\right)+\operatorname{Li}_2\left(-\frac{k-\mathrm{i}y-x}{\mathrm{i}y+x+1}\right)\right)
\end{eqnarray}
Another form of this result apparently is
\begin{eqnarray}
-\dfrac{1}{8xy} \left(\operatorname{arctan2}\left(\frac{y\left(k+1\right)}{y^2+\left(x-1\right)^2}, -\frac{\left(x-1\right)\left(k+1\right)}{y^2+\left(x-1\right)^2}\right)\ln\left(\left(k+x\right)^2+y^2\right)-\operatorname{arctan2}\left(\frac{y\left(k+1\right)}{y^2+\left(x+1\right)^2}, \frac{\left(x+1\right)\left(k+1\right)}{y^2+\left(x+1\right)^2}\right)\ln\left(\left(k-x\right)^2+y^2\right)+\operatorname{arctan2}\left(k-x, y\right)\ln\left(\frac{\left(k+1\right)^2}{y^2+\left(x+1\right)^2}\right)-\operatorname{arctan2}\left(k+x, y\right)\ln\left(\frac{\left(k+1\right)^2}{y^2+\left(x-1\right)^2}\right)+\mathrm{i}\left(\operatorname{Li}_2\left(\frac{\mathrm{i}\left(k+x\right)+y}{y+\mathrm{i}\left(x-1\right)}\right)-\operatorname{Li}_2\left(-\frac{\mathrm{i}\left(k+x\right)-y}{y-\mathrm{i}\left(x-1\right)}\right)-\operatorname{Li}_2\left(\frac{\mathrm{i}\left(k-x\right)+y}{y-\mathrm{i}\left(x+1\right)}\right)+\operatorname{Li}_2\left(-\frac{\mathrm{i}\left(k-x\right)-y}{y+\mathrm{i}\left(x+1\right)}\right)\right)+2\ln\left(k+1\right)\left(\arctan\left(\frac{k+x}{y}\right)-\arctan\left(\frac{k-x}{y}\right)\right) \right)
\end{eqnarray}
This was done using an online integral calculator based on Maxima. Wolfram Alpha gives similar results.

What I find suprising is that setting ##y=0## cancels all the terms in the first representation of the integral even without considering the limits of integration and in the second case the boundary condition is not recovered either.
 
Gribouille said:
From the book, the general solution is
\begin{equation}
f(x,y) = \frac{4}{\pi} x y \int_0^{\infty} \frac{g_1 (\eta) \eta \, \mathrm{d} \eta}{\left[ (y-\eta)^2 + x^2 \right] \left[ (y+\eta)^2 + x^2 \right]} + \frac{4}{\pi} x y \int_0^{\infty} \frac{g_2 (k) k \, \mathrm{d} k}{\left[ (x-k)^2 + y^2 \right] \left[ (x+k)^2 + y^2 \right]}
\end{equation}
where ##f = g_1(y)## at ##x=0## and ##f=g_2(x)## at ##y=0##. In my case, ## g_1 = 0## and ## g_2(x) = \ln(1+x)##.

I don't know how to insert screenshots, so here is the Latex code of the indefinite integral (the definite integral could not be computed)
\begin{eqnarray}
\dfrac{1}{8xy} \mathrm{i}\left(-\ln\left(-\mathrm{i}y-x+1\right)\ln\left(\left|k+\mathrm{i}y+x\right|\right)+\ln\left(-\mathrm{i}y+x+1\right)\ln\left(\left|k+\mathrm{i}y-x\right|\right)+\ln\left(\mathrm{i}y-x+1\right)\ln\left(\left|k-\mathrm{i}y+x\right|\right)-\ln\left(\mathrm{i}y+x+1\right)\ln\left(\left|k-\mathrm{i}y-x\right|\right)+\operatorname{Li}_2\left(\frac{k+\mathrm{i}y+x}{\mathrm{i}y+x-1}\right)-\operatorname{Li}_2\left(\frac{k+\mathrm{i}y-x}{\mathrm{i}y-x-1}\right)-\operatorname{Li}_2\left(-\frac{k-\mathrm{i}y+x}{\mathrm{i}y-x+1}\right)+\operatorname{Li}_2\left(-\frac{k-\mathrm{i}y-x}{\mathrm{i}y+x+1}\right)\right)
\end{eqnarray}
Another form of this result apparently is
\begin{eqnarray}
-\dfrac{1}{8xy} \left(\operatorname{arctan2}\left(\frac{y\left(k+1\right)}{y^2+\left(x-1\right)^2}, -\frac{\left(x-1\right)\left(k+1\right)}{y^2+\left(x-1\right)^2}\right)\ln\left(\left(k+x\right)^2+y^2\right)-\operatorname{arctan2}\left(\frac{y\left(k+1\right)}{y^2+\left(x+1\right)^2}, \frac{\left(x+1\right)\left(k+1\right)}{y^2+\left(x+1\right)^2}\right)\ln\left(\left(k-x\right)^2+y^2\right)+\operatorname{arctan2}\left(k-x, y\right)\ln\left(\frac{\left(k+1\right)^2}{y^2+\left(x+1\right)^2}\right)-\operatorname{arctan2}\left(k+x, y\right)\ln\left(\frac{\left(k+1\right)^2}{y^2+\left(x-1\right)^2}\right)+\mathrm{i}\left(\operatorname{Li}_2\left(\frac{\mathrm{i}\left(k+x\right)+y}{y+\mathrm{i}\left(x-1\right)}\right)-\operatorname{Li}_2\left(-\frac{\mathrm{i}\left(k+x\right)-y}{y-\mathrm{i}\left(x-1\right)}\right)-\operatorname{Li}_2\left(\frac{\mathrm{i}\left(k-x\right)+y}{y-\mathrm{i}\left(x+1\right)}\right)+\operatorname{Li}_2\left(-\frac{\mathrm{i}\left(k-x\right)-y}{y+\mathrm{i}\left(x+1\right)}\right)\right)+2\ln\left(k+1\right)\left(\arctan\left(\frac{k+x}{y}\right)-\arctan\left(\frac{k-x}{y}\right)\right) \right)
\end{eqnarray}
This was done using an online integral calculator based on Maxima. Wolfram Alpha gives similar results.

What I find suprising is that setting ##y=0## cancels all the terms in the first representation of the integral even without considering the limits of integration and in the second case the boundary condition is not recovered either.

Your solution does seem to satisfy the boundary condition for ##y=0##. Using a small non-zero value ##y = 0.001## we can plot the value of the solution
$$f(x,y) = \frac{4 x y}{\pi} \int_0^{\infty} \frac{u \ln(1+u)}{[(x-u)^2+y^2)] [(x+u)^2+y^2]}$$
as a function of ##x## and compare it with the graph of ##\ln(1+x)##. I did this using Maple, and the results are given below. I just left the integral unevaluated and let Maple compute it numerically, but the same result was obtained if Maple did it symbolically.

The two graphs ##f(x,0.001)## in blue and ##\log(1+x)## in red coincide, and just look like a single blue plot. I also (separately) plotted ##f(x,0.001)_{\text{numerical}}## and ##f(x,0.001)_{\text{analytical}}## together, and they likewise coincide.

upload_2018-8-5_17-57-54.png
 

Attachments

  • upload_2018-8-5_17-57-54.png
    upload_2018-8-5_17-57-54.png
    1.1 KB · Views: 554
  • Like
Likes   Reactions: Delta2
Gribouille said:
Hi,
I am looking for the solution to the quadrant problem of the Laplace equation in 2 dimensions with Dirichlet boundary conditions
\begin{equation}
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
\end{equation}
in the first quadrant ## x, y \geq 0 ## with boundary conditions ## f = \ln(1+x)## at ##y=0## and ##f=0## at ##x=0##.

I have looked at the solution in the book "Handbook of linear partial differential equations for engineers and scientists, 2nd edition, p. 800" but doing the integration with online algebra software (Mathematica, Maxima) gives nonsensical results that do not satisfy the boundary conditions.

Can you help me out with the solution?
Here is a 3d-plot of the solution
$$f(x,y) = \frac{4 x y}{\pi} \int_0^{\infty} \frac{u \ln(1+u)}{[(x-u)^2+y^2)] [(x+u)^2+y^2]}\, du,$$
as done using Maple. In plotting, if the integral is "tricky" to do analytically, Maple will just evaluate it numerically.

Poisson_Soln3d.jpg
 

Attachments

  • Poisson_Soln3d.jpg
    Poisson_Soln3d.jpg
    18.4 KB · Views: 488
  • upload_2018-8-6_11-39-21.png
    upload_2018-8-6_11-39-21.png
    1.2 KB · Views: 395

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K