MHB A Surjective function from [0,1]\{1/2} to [0,1]

Click For Summary
The discussion revolves around the challenge of finding a surjective function from the interval [0,1] excluding 1/2 to the interval [0,1], with the condition that if f(a) > f(b), then a > b. The original poster expresses difficulty in solving this problem without using cardinality arguments. A participant suggests considering an increasing sequence approaching 1/2 and questions the behavior of the function at that limit. The conversation highlights the complexities of defining such a function under the given constraints.
Ella1
Messages
2
Reaction score
0
Hello guys! I'm taking Discrete Mathematics this semester and I got this question in one of my homework tasks.
I've tried thinking about the solution over and over but can't seem to come up with anything..
The question goes like this: Is there a Surjective function from [0,1]\{1/2} to [0,1] such that if f(a)>f(b) that means that a>b?
I must mention that sadly I cannot use any arguments involving cardinality..
Any clue that might help will save my life!p.s Sorry for my poor English :)!
 
Physics news on Phys.org
Ella said:
Hello guys! I'm taking Discrete Mathematics this semester and I got this question in one of my homework tasks.
I've tried thinking about the solution over and over but can't seem to come up with anything..
The question goes like this: Is there a Surjective function from [0,1]\{1/2} to [0,1] such that if f(a)>f(b) that means that a>b?
Hi Ella, and welcome to MHB!

Suppose that $(x_n)$ is an increasing sequence in $[0,1/2)$, with $\lim_{n\to\infty}x_n = 1/2.$ What can you say about the point $\lim_{n\to\infty}f(x_n)$? Can it be in the range of $f$?
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
Replies
4
Views
4K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K