MHB A Very Standard Theorem in Set Theory

AI Thread Summary
The discussion centers on proving that there is no bijection between any set \( A \) and its power set \( \mathcal{P}(A) \), referencing Russell's paradox. The proof begins by assuming a bijection \( \varphi: A \to \mathcal{P}(A) \) and defining a function \( g \) based on the mapping of elements in \( A \). A contradiction arises when trying to identify an element \( y \) such that \( \varphi_y = g \), leading to an inconsistency with the definition of \( g \). This contradiction confirms that such a bijection cannot exist. The proof effectively demonstrates the relationship between a set and its power set, reinforcing foundational concepts in set theory.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $A$ be any set. Show that there is no bijection between $A$ and the power set $\mathcal P(A)$ of $A$.

(The power set of a set is the set of all its subsets including the empty-set.)
 
Mathematics news on Phys.org
caffeinemachine said:
Let $A$ be any set. Show that there is no bijection between $A$ and the power set $\mathcal P(A)$ of $A$.

(The power set of a set is the set of all its subsets including the empty-set.)
The proof is a version of Russell's paradox.
Suppose (in order to get a contradiction) that $f:A\to \mathcal P(A)$ is a bijection. Let $X = \{ x\in A: x\notin f(x) \}$. Since $f$ is surjective, $X = f(x_0)$ for some $x_0\in A$. Now ask whether or not $x_0 \in X$.
 
Opalg said:
The proof is a version of Russell's paradox.
Suppose (in order to get a contradiction) that $f:A\to \mathcal P(A)$ is a bijection. Let $X = \{ x\in A: x\notin f(x) \}$. Since $f$ is surjective, $X = f(x_0)$ for some $x_0\in A$. Now ask whether or not $x_0 \in X$.
Here's my version of the same:

We interpret $\mathcal P(A)$ as the set of all the functions from $A$ to $\{0,1\}$. Assume for the sake of a contradiction that there is a bijection $\varphi:A\to \mathcal P(A)$. We write $\varphi_x$ instead of $\varphi(x)$ for $x\in A$. Define $g:A\to \{0,1\}$ as $g(x)=1$ if $\varphi_x(x)=0$ and $g(x)=0$ if $\varphi_x(x)=1$. Let $\varphi_y=g$. Then $\varphi_y(y)=g(y)$ (There exists such a $y$ by assumption). The last equality is impossible by definition of $g$ and thus we achieve a contradiction and the proof is complete.$\blacksquare$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
15
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
72
Views
7K
Back
Top