MHB A Very Standard Theorem in Set Theory

Click For Summary
The discussion centers on proving that there is no bijection between any set \( A \) and its power set \( \mathcal{P}(A) \), referencing Russell's paradox. The proof begins by assuming a bijection \( \varphi: A \to \mathcal{P}(A) \) and defining a function \( g \) based on the mapping of elements in \( A \). A contradiction arises when trying to identify an element \( y \) such that \( \varphi_y = g \), leading to an inconsistency with the definition of \( g \). This contradiction confirms that such a bijection cannot exist. The proof effectively demonstrates the relationship between a set and its power set, reinforcing foundational concepts in set theory.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $A$ be any set. Show that there is no bijection between $A$ and the power set $\mathcal P(A)$ of $A$.

(The power set of a set is the set of all its subsets including the empty-set.)
 
Mathematics news on Phys.org
caffeinemachine said:
Let $A$ be any set. Show that there is no bijection between $A$ and the power set $\mathcal P(A)$ of $A$.

(The power set of a set is the set of all its subsets including the empty-set.)
The proof is a version of Russell's paradox.
Suppose (in order to get a contradiction) that $f:A\to \mathcal P(A)$ is a bijection. Let $X = \{ x\in A: x\notin f(x) \}$. Since $f$ is surjective, $X = f(x_0)$ for some $x_0\in A$. Now ask whether or not $x_0 \in X$.
 
Opalg said:
The proof is a version of Russell's paradox.
Suppose (in order to get a contradiction) that $f:A\to \mathcal P(A)$ is a bijection. Let $X = \{ x\in A: x\notin f(x) \}$. Since $f$ is surjective, $X = f(x_0)$ for some $x_0\in A$. Now ask whether or not $x_0 \in X$.
Here's my version of the same:

We interpret $\mathcal P(A)$ as the set of all the functions from $A$ to $\{0,1\}$. Assume for the sake of a contradiction that there is a bijection $\varphi:A\to \mathcal P(A)$. We write $\varphi_x$ instead of $\varphi(x)$ for $x\in A$. Define $g:A\to \{0,1\}$ as $g(x)=1$ if $\varphi_x(x)=0$ and $g(x)=0$ if $\varphi_x(x)=1$. Let $\varphi_y=g$. Then $\varphi_y(y)=g(y)$ (There exists such a $y$ by assumption). The last equality is impossible by definition of $g$ and thus we achieve a contradiction and the proof is complete.$\blacksquare$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 72 ·
3
Replies
72
Views
8K