MHB AB=AC,∠ABD=60°,∠ADB=70°,∠BDC=40°,find∠DBC

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
In quadrilateral ABCD, with AB equal to AC, the angles are given as ∠ABD = 60°, ∠ADB = 70°, and ∠BDC = 40°. To find ∠DBC, the properties of isosceles triangles and the sum of angles in a triangle are applied. The calculations reveal that ∠DBC equals 70°. This conclusion is reached by analyzing the relationships between the angles and using the triangle sum theorem. The final answer is ∠DBC = 70°.
Albert1
Messages
1,221
Reaction score
0
$Quadrilateral \,\,ABCD,\overline{AB}=\overline{AC} ,\angle ABD=60^o,\angle ADB=70^o,
\angle BDC=40^o,find \,\, \angle DBC=?$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$Quadrilateral \,\,ABCD,\overline{AB}=\overline{AC} ,\angle ABD=60^o,\angle ADB=70^o,
\angle BDC=40^o,find \,\, \angle DBC=?$
hint:
using the diagram:
construct a point E between $\overline{CD},and \,\, \angle ABE=70 ^o$
prove points C and E overlap
View attachment 6993
 

Attachments

  • Angle DBC.jpg
    Angle DBC.jpg
    8.5 KB · Views: 106
from previous diagram we have:
Points $A,B,E,D$ cocyclic, so $\overset{\frown}{AB}=\overset{\frown}{AE}=140^o$
we get $\overline{AB}=\overline{AE}=\overline{AC}$
and points C and E overlap (since points C,E,D colinear)
$\therefore \angle DBC=\angle DBE=10^o$