Abelian X-Groups and Noetherian (Abelian) X-Groups

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
Isaacs' treatment of Noetherian and abelian X-groups is not considered standard in module theory, but it aligns well with the Jordan-Hölder theorem. His definition of an X-group involves an operator set X, where operations like conjugation are defined. Examples illustrate that X-groups can represent various structures, such as groups with specific operations or vector spaces with scalar multiplication. While the terminology "X-group" may not be widely accepted, Isaacs' approach is still regarded as effective for certain theoretical applications. Overall, his book is praised for its clarity and depth, making it a valuable resource despite its non-standard methodology.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I was having a quick look at Isaacs : Algebra - A Graduate Course and was interested in his approach to Noetherian modules. I wonder though how standard is his treatment and his terminology. Is this an accepted way to study module theory and is his term X-Group fairly standard (glimpsing at other books it does not seem to be!) and, further, if the structure he is talking about is a standard item of study, is his terminology "X-Group" standard? If not, what is the usual terminology.

A bit of information on Isaacs treatment of X-Groups follows:

In Chapter 10: Operator Groups and Unique Decompositions, on page 129 (see attachment) Isaacs defines an X-Group as follows:

0.1 DEFINITION. Let X be an arbitrary (possibly empty) set and Let G be a group. We say that G is an X-group (or group with operator set X) provided that for each x \in X and g \in G, there is defined an element g^x \in G such that if g, h \in G then {(gh)}^x = g^xh^x

I am not quite sure what the "operator set" is, but from what I can determine the notation g^x refers to the conjugate of g with respect to x (this is defined on page 20 - see attachment)

In Chapter 10: Module Theory without Rings, Isaacs defines abelian X-groups and uses them to develop module theory and in particular Noetherian and Artinian X-groups.

Regarding a Noetherian (abelian) X-group, the definition (Isaacs page 146) is as follows:

DEFINITION. Let M be an abelian X-group and consider the poset of all X-groups ordered by the inclusion \supseteq. We say M is Noetherian if this poset satisfies the ACC (ascending chain condition)

My question is - is this a standard and accepted way to introduce module theory and the theory of Noetherian and Artinian modules and rings.

Further, can someone give a couple of simple and explicit examples of X-groups in which the sets X and G are spelled out and some example operations are shown.

Peter
 

Attachments

Last edited:
Physics news on Phys.org
It's not really a standard way to do module theory, but it certainly is a standard way of doing the Jordan-Holder theorem. If we would not do it that way, then we would need different theorems for different occasions.

Specific examples:

If ##G## is any group and ##X=\emptyset##, then an X-group is just the same as a group.

If ##G## is any group and if ##X=\{2\}## (or another number), then we get groups where ##(gh)^2 = g^2 h^2##. These are abelian groups.

If ##G## is any group and ##X=G##, then we can set ##g^x = xgx^{-1}##, the conjugation.

If ##M## is a vector space over ##\mathbb{R}##, then take ##X=\mathbb{R}##. The usual scalar multiplication then gives ##g^x##.

The notion of X-groups is used most often in settings about dimensions, or series of subgroups.
 
  • Like
Likes member 587159 and Math Amateur
Do you know Martin Isaacs book in which he uses X-Groups for the Jordan-Holder Theorem and as a way to introduce modules.

How do you rate his book and approach (even through it is non-standard in terms of introducing module theory.

Peter
 
I know Isaacs book, and I think it is an excellent book. So if you like it, then you should keep doing it.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
533
  • · Replies 26 ·
Replies
26
Views
860
  • · Replies 3 ·
Replies
3
Views
880
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
613
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K