I About derivations of lie algebra

HDB1
Messages
77
Reaction score
7
TL;DR Summary
Derivation on lie algebra ##sl_2##
Please, I am looking for a simple example of derivation on ##sl_2##, if possible, I try to use identity map, but not work with me,

A derivation of the Lie algebra ##\mathfrak{g}## is a linear map ##\delta: \mathfrak{g} \rightarrow \mathfrak{g}## such that ##\delta([x, y])=[\delta(x), y]+[x, \delta(y)]##, for all ##x## and ##y## in ##\mathfrak{g}##.Thanks in advance, :heart:
 
Physics news on Phys.org
dear @fresh_42 , if you could help, I would appreciate it, :heart:
 
HDB1 said:
TL;DR Summary: Derivation on lie algebra ##sl_2##

Please, I am looking for a simple example of derivation on ##sl_2##, if possible, I try to use identity map, but not work with me,

A derivation of the Lie algebra ##\mathfrak{g}## is a linear map ##\delta: \mathfrak{g} \rightarrow \mathfrak{g}## such that ##\delta([x, y])=[\delta(x), y]+[x, \delta(y)]##, for all ##x## and ##y## in ##\mathfrak{g}##.Thanks in advance, :heart:
Well, how should I say it?

For every semisimple Lie algebra ##L##, and ##\mathfrak{sl}(2)## is simple and therefore semisimple, all derivations are inner derivations. Inner derivations are all transformations ##\operatorname{ad}X## with ##X\in L.## This is the second Whitehead lemma IIRC and it should be somewhere in Humphreys, too.

So for semisimple Lie algebras, ##\delta =\operatorname{ad}(X)## for some ##X\in L.## Hence ##X \longmapsto (Y\longmapsto \operatorname{ad}(X)(Y)=[X,Y]## are already all derivations you can get for ##sl(2).## And since the center of ##L## which is the kernel of ##\operatorname{ad}## is zero, we even have
$$
L\cong \operatorname{ad}L =\operatorname{Der}(L)
$$
Derivations are basically the Leibniz rule in calculus:
$$
(f\cdot g)' = f' \cdot g+f\cdot g' \Leftrightarrow D(f\cdot g)=D(f)\cdot g+f\cdot D(g) \Leftrightarrow
\delta([f, g])=[\delta(f), g]+[f, \delta(g)]
$$
and the similarity is not by chance!

So if you need a derivation of ##\mathfrak{sl}(2)## then how about
$$
\operatorname{ad}H=\begin{pmatrix}2&0&0\\0&0&0\\0&0&-2\end{pmatrix}
$$
 
fresh_42 said:
$$
L\cong \operatorname{ad}L =\operatorname{Der}(L)
$$
Thank you, please, could you explain here why we have isomorphism?

Thanks in advance,
 
HDB1 said:
Thank you, please, could you explain here why we have isomorphism?

Thanks in advance,
We have a surjective transformation ##L\longrightarrow \operatorname{ad}L=\{\operatorname{ad}X\,|\,X\in L\}## per definition. ##\operatorname{ad}## is linear and for the sake of the Jacobi identity also a Lie algebra homomorphism. So all that remains to show is that it is injective, or that ##\ker\operatorname{ad}(L)=\{0\}.## However,
\begin{align*}
\ker\operatorname{ad}(L)&=\{X\in L\,|\,\operatorname{ad}(X)\equiv 0\}=
\{X\in L\,|\,\operatorname{ad}(X)(Y)=0\text{ for all }Y\in L\}\\
&=\{X\in L\,|\,[X,Y]=0\text{ for all }Y\in L\}=Z(L)
\end{align*}

I used to write ##\mathfrak{Z}(L)## as the center of ##L##. I'm used to fraktura that leaves more letters for elements and ordinary sets and is a better distinction if also Lie groups are involved. I think Humphreys writes it ##\mathfrak{Z}(L)=Z(L)=C(L),## one of these.

Anyway, the center is an abelian ideal, hence a solvable ideal, hence contained in the maximal solvable ideal, which is the radical, but the radical of a semisimple Lie algebra is zero by definition of semisimplicity. The center of semisimple ideals is thus the zero ideal.
 
Thank you so much for your help, @fresh_42 , words can't help me to express how grateful I am to you, :heart: :heart: :heart: :heart:
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
15
Views
3K
Replies
19
Views
3K
Replies
2
Views
2K
Replies
3
Views
426
Replies
19
Views
3K
Replies
4
Views
2K
Back
Top