What is the definition of quotient Lie algebra?

In summary: B) So if we use the commutator bracket (the Lie bracket), what will happen with matrix ##X##?C) And what will happen with ##\lambda \mathbb{1}##?D) So what will happen with ##A##?If you do this for all possible such matrices, you will find that ##[\mathfrak{sl}(2),\mathfrak{sl}(2)]=\mathfrak{sl}(2).## The center is not contained in the commutator, and it is only the multiples of the identity matrix.
  • #1
HDB1
77
7
TL;DR Summary
quotient Lie algebra
Please, in the definition of quotient Lie algebra

If ##I## is an ideal of ##\mathfrak{g}##, then the vector space ##\mathfrak{g} / I## with the bracket defined by:
$$[x+I, y+I]=[x, y]+I, for all x, y \in \mathfrak{g}$$,
is a Lie algebra called the quotient Lie algebra of ##\mathfrak{g}## by ##I##.

Since, ##\mathfrak{s l}_2(\mathbb{K}) \text { is an ideal of the lie algebra } \mathfrak{g l}_2(\mathbb{K}) .##

could we define quotient Lie algebra here, is it the function from ##\mathfrak{g l}_2## to ##\mathfrak{g l}_2 / \mathfrak{s l}_2##,?
if yes, how we get this element, ##x+I =x + \mathfrak{s l}_2, x \in \mathfrak{g l}_2##

Thank you so much,
 
Physics news on Phys.org
  • #2
Dear @fresh_42 , if you could help, I would appreciate it, :heart:
 
  • #3
HDB1 said:
TL;DR Summary: quotient Lie algebra

Please, in the definition of quotient Lie algebra

If ##I## is an ideal of ##\mathfrak{g}##, then the vector space ##\mathfrak{g} / I## with the bracket defined by:
$$[x+I, y+I]=[x, y]+I, \forall x, y \in \mathfrak{g}$$,
is a Lie algebra called the quotient Lie algebra of ##\mathfrak{g}## by ##I##.

Since, ##\mathfrak{s l}_2(\mathbb{K}) \text { is an ideal of the lie algebra } \mathfrak{g l}_2(\mathbb{K}) .##

could we define quotient Lie algebra here, is it the function from ##\mathfrak{g l}_2## to ##\mathfrak{g l}_2 / \mathfrak{s l}_2##,?
if yes, how we get this element, ##x+I =x + \mathfrak{s l}_2, x \in \mathfrak{g l}_2##

Thank you so much,
Yes, this is true.

We can split ##\mathfrak{gl}(2)=\mathfrak{sl}(2)\oplus \mathfrak{Z}(\mathfrak{sl})(2)=\mathfrak{sl}(2)\oplus \mathbb{K}\cdot \begin{pmatrix}1&0\\0&1\end{pmatrix}.## It is a direct sum, i.e. both are ideals in ##\mathfrak{gl}(2).## Hence we can build both quotients (##\mathbb{1}## is the identity matrix)
\begin{align*}
\mathfrak{gl}(2) &\twoheadrightarrow \mathfrak{gl}(2)/\mathfrak{sl}(2)\cong \mathbb{K}\\[16pt]
\mathfrak{gl}(2) &\twoheadrightarrow \mathfrak{gl}(2)/ \mathbb{K}\cdot \mathbb{1}\cong \mathfrak{sl}(2)
\end{align*}
The two projection mappings are given by the following decomposition
\begin{align*}
\begin{pmatrix}a&b\\c&d\end{pmatrix}\longmapsto \begin{pmatrix}a&b\\c&d\end{pmatrix}+\mathfrak{sl}(2)=&\begin{pmatrix}\dfrac{d+a}{2}&0\\0&\dfrac{d+a}{2}\end{pmatrix}+\underbrace{\begin{pmatrix}\dfrac{a-d}{2}&b\\c&\dfrac{d-a}{2}\end{pmatrix}}_{\in \mathfrak{sl}(2)} +\mathfrak{sl}(2) \\
&=\underbrace{\begin{pmatrix}\dfrac{d+a}{2}&0\\0&\dfrac{d+a}{2}\end{pmatrix}}_{= \frac{a+d}{2}\cdot \mathbb{1}}+\mathfrak{sl}(2)\in \mathbb{K}\cdot \mathbb{1}+\mathfrak{sl}(2)
\end{align*}
The general linear algebras ##\mathfrak{gl}(V)## are the direct product of its ideals ##[\mathfrak{gl}(V),\mathfrak{gl}(V)]=\mathfrak{sl}(V)## and its one-dimensional center ##\mathfrak{Z}(\mathfrak{gl}(V))\cong \mathbb{K}## of multiples of the identity matrix:
$$
\mathfrak{gl}(V) \cong \mathfrak{sl}(V) \times \mathbb{K}
$$

Note: ##\times ## or ##\oplus## are the same here. I prefer ##\times## since it signals that both factors are ideals, and ##\oplus## is primarily a direct sum of vector spaces.
 
  • Like
Likes HDB1
  • #4
fresh_42 said:
\begin{align*}
\mathfrak{gl}(2) &\twoheadrightarrow \mathfrak{gl}(2)/\mathfrak{sl}(2)\cong \mathbb{K}\\[16pt]
\mathfrak{gl}(2) &\twoheadrightarrow \mathfrak{gl}(2)/ \mathbb{K}\cdot \mathbb{1}\cong \mathfrak{sl}(2)
\end{align*}
Thank you so much, I really appreciate your time and help,
##\mathfrak{gl}(2)=\mathfrak{sl}(2)\oplus \mathfrak{Z}(\mathfrak{sl})(2)
here please, you the center of ##\mathfrak{g l}(2)## or ##\mathfrak{s l}(2)##please, I have a question, here, how you get the isomorophism here:

could you please, give me example how we compute: ##\mathfrak{g l}(2) / \mathfrak{s l}(2)##

is the outcome will be in ##\mathfrak{g l}(2)##? please.
I mean in general , is the factor algebra of ##\mathfrak{g l}(2) / \mathfrak{s l}(2)## will give us an matrix in ##\mathfrak{g l}(2)##please, here: how you get it:
##[\mathfrak{gl}(V),\mathfrak{gl}(V)]=\mathfrak{sl}(V)##
I just use tow matrices form ##\mathfrak{g l}(2)## and compute their commutator and get a matrix in ## / \mathfrak{s l}(2)
is that enough? please,
##\mathfrak{Z}(\mathfrak{gl}(V))\cong \mathbb{K}##
I am so sorry, but please, could you tell me how you get the center?
 
Last edited:
  • #5
HDB1 said:
Thank you so much, I really appreciate your time and help,

please, I have a question, here, how you get the isomorophism here:

\begin{align*}
\mathfrak{gl}(2) &\twoheadrightarrow \mathfrak{gl}(2)/\mathfrak{sl}(2)\cong \mathbb{K}\\[16pt]
\mathfrak{gl}(2) &\twoheadrightarrow \mathfrak{gl}(2)/ \mathbb{K}\cdot \mathbb{1}\cong \mathfrak{sl}(2)
\end{align*}

could you please, give me example how we compute: ##\mathfrak{g l}(2) / \mathfrak{s l}(2)##

Quotient spaces are sets of equivalence classes. Given ##A/B## we consider its elements as ##a+B.## This means that ##a+B =a'+B \Longleftrightarrow a-a' \in B.##

The easiest way to get used to it is to consider, say ##\mathbb{Z}/3\cdot \mathbb{Z}.## It consists of elements ##z_0+3\cdot \mathbb{Z}.## So the elements themselves are sets, represented by ##z_0.## ##3\mathbb{Z}=\{\ldots,-6,-3,0,3,6,9,12,\ldots\}.## In ##\mathbb{Z}/3\cdot \mathbb{Z}## we identify
$$
a+3\mathbb{Z}=a'+3\mathbb{Z} \Longleftrightarrow a-a' \in 3\mathbb{Z}
$$
This results in three elements:
\begin{align*}
\bar 0=0+3\mathbb{Z}&=\{\ldots,-6,-3,0,3,6,9,12,\ldots\}\\
\bar 1=1+3\mathbb{Z}&=\{\ldots,-5,-2,1,4,7,10,13,\ldots\}\\
\bar 2=2+3\mathbb{Z}&=\{\ldots,-4,-1,2,5,8,11,14,\ldots\}
\end{align*}
Every integer is in one of these sets and represented by one of the elements ##\bar 0\, , \,\bar 1,\bar 2.## So $$
\mathbb{Z}/3\mathbb{Z}=\mathbb{Z}_3=\mathbb{F}_3=\{\bar 0\, , \,\bar 1,\bar 2\}=\{[0],[1],[2]\}=\{0,1,2\}
$$
The letter ##\mathbb{F}## signals that ##\mathbb{Z}_3## is a field (of characteristic ##3##) so it is sometimes written ##\mathbb{F}_3## and the set ##\{0,1,2\}## comes from lazy people who do not want to carry the bar, or sometimes brackets. The brackets here have nothing to do with Lie algebras. They are only a possible notation for equivalence classes. But as soon as it is clear that we speak about a quotient, i.e. equivalence classes as elements, as soon people simplify notation by just writing, here ##0,1,2## although they mean ##0+3\mathbb{Z}\, , \,1+3\mathbb{Z}\, , \,2+3\mathbb{Z}.##

This is the construction plan behind quotients. In this example, we have in ##0,1,2## the possible remainders by an integer division by ##3##. And these three numbers (with ##2+1=0\, , \,2\cdot\otimes =1##) form a field. The set under the quotient is the new zero. Here all numbers divisible by ##3## become zero.

The quotients for vector spaces or rings or algebras or Lie algebras work accordingly.

Consider an arbitrary matrix ##\begin{pmatrix}a&b\\c&d\end{pmatrix}\in \mathfrak{gl}(2).## Then we write it as
$$
A=\begin{pmatrix}a&b\\c&d\end{pmatrix}=\underbrace{\begin{pmatrix}\dfrac{a+d}{2}&0\\0&\dfrac{a+d}{2}\end{pmatrix}}_{=\lambda \mathbb{1}}
+ \underbrace{\begin{pmatrix}\dfrac{a-d}{2}&b\\c&\dfrac{d-a}{2}\end{pmatrix}}_{=\;X\;\in \mathfrak{sl}(2)}
$$
The first part is a multiple of the identity matrix ##\mathbb{1}##, and the second part is in ##\mathfrak{sl}(2).##

A) The multiples of the identity matrix, ##\mathbb{K}\cdot \mathbb{1}## commute with all other matrices, so they are in the center or ##\mathfrak{gl}(2).## They are in fact the entire center (Schur's lemma, I think). The center of a Lie algebra is an ideal. So we can not only build ##\mathfrak{gl}(2)/\mathbb{K}\cdot \mathbb{1} =\mathfrak{gl}(2)/\mathfrak{Z}(\mathfrak{gl}(2)),## the ideal property also guarantees that this quotient is again a Lie algebra. (Try to prove: If ##I\triangleleft L## is an ideal, then ##L/I=\{a+I\,|\,a\in L\}## is again a Lie algebra.) Here we have
$$
\bar A = A+\{\lambda \cdot \mathbb{1}\,|\,\lambda \in \mathbb{K}\}= X
$$
The first part of the decomposition of ##A=\lambda\cdot \mathbb{1}+X## is swallowed in ##\{\lambda \cdot \mathbb{1}\,|\,\lambda \in \mathbb{K}\}## which is nothing else as the center of ##\mathfrak{gl}(2),## or a copy of the scalar field ##\mathbb{K}## because we have only one scalar as a parameter, it is a one-dimensional vector space:
$$
\mathfrak{gl}(2)/\mathfrak{Z}(\mathfrak{gl}(2))=\mathfrak{gl}(2)/\mathbb{K}\cdot \mathbb{1}\cong \{X\} =\mathfrak{sl}(2)
$$
The isomorphism is ##\varphi (A)=\bar A=X+\mathfrak{Z}(\mathfrak{gl}(2))## and since nobody wants to write this, we simply say ##\varphi (A)=X## where ##X## is the part of ##A## that is in ##\mathfrak{sl}(2).##

B) The second possibility is accordingly. We have
$$
[\mathfrak{gl}(2),\mathfrak{gl}(2)]=\mathfrak{sl}(2)
$$
so ##\mathfrak{sl}(2)\triangleleft \mathfrak{gl}(2)## is also an ideal in ##\mathfrak{gl}(2).## Therefore
$$
\mathfrak{gl}(2)/\mathfrak{sl}(2) \cong \mathbb{K}
$$
is again a Lie algebra. This time, we make ##\mathfrak{sl}(2)## our new zero in the quotient space. It swallows the parts of ##A## that is in ##\mathfrak{sl}(2),## i.e. it swallows ##X##. The isomorphism is thus ##\varphi (A)=\bar A=\lambda \cdot\mathbb{1}+\mathfrak{sl}(2),## and again if we strip all redundant notation, we get ##\varphi (A)=\lambda \in \mathbb{K}.## Strictly speaking, it would have been ##\mathbb{K}\cdot \mathbb{1}## but this is the same as just writing ##\mathbb{K}.##

Note: The decomposition of ##A## also shows, that ##\mathfrak{gl}(2)=\mathbb{K}\cdot \mathbb{1}\oplus \mathfrak{sl}(2)## as mere vector spaces, just by the addition of ##A=\lambda \cdot \mathbb{1}+X.## This allows us to calculate
\begin{align*}
[\mathfrak{gl}(2),\mathfrak{gl}(2)]&=[\mathbb{K}\cdot \mathbb{1}\oplus \mathfrak{sl}(2),\mathbb{K}\cdot \mathbb{1}\oplus \mathfrak{sl}(2)]\\
&=\underbrace{[\mathbb{K}\cdot \mathbb{1},\mathbb{K}\cdot \mathbb{1}]}_{=\{0\}}+
\underbrace{[\mathbb{K}\cdot \mathbb{1},\mathfrak{sl}(2)]}_{=\{0\}}+\underbrace{[\mathfrak{sl}(2),\mathbb{K}\cdot \mathbb{1}]}_{=\{0\}}+[\mathfrak{sl}(2),\mathfrak{sl}(2)]\\
&=[\mathfrak{sl}(2),\mathfrak{sl}(2)]=\mathfrak{sl}(2)
\end{align*}
 
  • Like
Likes HDB1
  • #6
HDB1 said:
I just use tow matrices form gl(2) and compute their commutator and get a matrix in ## / \mathfrak{s l}(2)
is that enough? please,
Yes. You only have to show that ##\operatorname{trace}[A,B]=\operatorname{trace}(A\cdot B-B\cdot A)=\operatorname{trace}(A\cdot B)-\operatorname{trace}(B\cdot A)=0.##
 
  • Like
Likes HDB1
  • #7
fresh_42 said:
$$
\bar A = A+\{\lambda \cdot \mathbb{1}\,|\,\lambda \in \mathbb{K}\}= X
$$
The first part of the decomposition of ##A=\lambda\cdot \mathbb{1}+X## is swallowed in ##\{\lambda \cdot \mathbb{1}\,|\,\lambda \in \mathbb{K}\}## which is nothing else as the center of ##\mathfrak{gl}(2),## or a copy of the scalar field ##\mathbb{K}## because we have only one scalar as a parameter, it is a one-dimensional vector space:
$$
\mathfrak{gl}(2)/\mathfrak{Z}(\mathfrak{gl}(2))=\mathfrak{gl}(2)/\mathbb{K}\cdot \mathbb{1}\cong \{X\} =\mathfrak{sl}(2)
$$
The isomorphism is ##\varphi (A)=\bar A=X+\mathfrak{Z}(\mathfrak{gl}(2))## and since nobody wants to write this, we simply say ##\varphi (A)=X## where ##X## is the part of ##A## that is in ##\mathfrak{sl}(2).##

B) The second possibility is accordingly. We have
$$
[\mathfrak{gl}(2),\mathfrak{gl}(2)]=\mathfrak{sl}(2)
$$
so ##\mathfrak{sl}(2)\triangleleft \mathfrak{gl}(2)## is also an ideal in ##\mathfrak{gl}(2).## Therefore
$$
\mathfrak{gl}(2)/\mathfrak{sl}(2) \cong \mathbb{K}
$$
is again a Lie algebra. This time, we make ##\mathfrak{sl}(2)## our new zero in the quotient space. It swallows the parts of ##A## that is in ##\mathfrak{sl}(2),## i.e. it swallows ##X##. The isomorphism is thus ##\varphi (A)=\bar A=\lambda \cdot\mathbb{1}+\mathfrak{sl}(2),## and again if we strip all redundant notation, we get ##\varphi (A)=\lambda \in \mathbb{K}.## Strictly speaking, it would have been ##\mathbb{K}\cdot \mathbb{1}## but this is the same as just writing ##\mathbb{K}.##
Dear @fresh_42, thank you so much for your help and time,
please, if you do not mind, could you please, give me an example with number about above, I did not get the idea well, 😢
 
  • #8
HDB1 said:
Dear @fresh_42, thank you so much for your help and time,
please, if you do not mind, could you please, give me an example with number about above, I did not get the idea well, 😢

You should actually start with integers and the example ##\mathbb{Z}/3\mathbb{Z}=\mathbb{Z}_3=\{0,1,2\}## I gave you. Try to prove that this set ...
\begin{align*}
&\left\{ 0+\{\ldots,-6,-3,0,3,6,\ldots\} \right\} \; , \; \left\{ 1+\{ \ldots,-6,-3,0,3,6,\ldots\} \right\} \; , \; \left\{ 2+\{ \ldots,-6,-3,0,3,6,\ldots \} \right\} \\
&=\left\{ \underbrace{\{ \ldots,-6,-3,0,3,6,\ldots \}}_{=0}\; , \;\underbrace{\{ \ldots,-5,-4,1,4,5,\ldots \}}_{=1} \; , \; \underbrace{\{ \ldots,-4,-1,2,5,7,\ldots \}}_{=2} \right\}
\end{align*}
... of three sets, each one an element of ##\mathbb{Z}/3\mathbb{Z}## form a field.

A.) ##\mathfrak{gl}(2) / \mathbb{K} \cong \mathfrak{sl}(2)##

The elements of ##\mathfrak{gl}(2) / \mathbb{K}## are of the form
$$
\begin{pmatrix}a&b\\c&d\end{pmatrix} + \mathbb{K}\cdot \mathbb{1}=\begin{pmatrix}a&b\\c&d\end{pmatrix}+\left\{\begin{pmatrix}\lambda &0\\0&\lambda \end{pmatrix}\, : \,\lambda \in \mathbb{K}\right\}
$$
If we have ##\begin{pmatrix}17&-3\\11&-1\end{pmatrix}\in \mathfrak{gl}(2)## then we write it as a sum as follows:
\begin{align*}
\underbrace{\begin{pmatrix}17&-3\\11&-1\end{pmatrix}}_{=X}&=\underbrace{\begin{pmatrix}\dfrac{17+1}{2}&-3\\11&\dfrac{-1-17}{2}\end{pmatrix}}_{=\bar X}+\underbrace{\begin{pmatrix}\dfrac{17-1}{2}&0\\0&\dfrac{17-1}{2}\end{pmatrix}}_{=8\cdot \mathbb{1}}\\
&=\bar X+8\cdot\mathbb{1}\in \mathfrak{sl}(2) + \mathbb{K}\cdot \mathbb{1}
\end{align*}
If we pass from ##\mathfrak{gl}(2)## to ##\mathfrak{gl}(2) / \mathbb{K}## then we consider all multiples of the identity matrix as (new) zero. So ##X=\begin{pmatrix}17&-3\\11&-1\end{pmatrix}## becomes (= is represented by) ##\bar X.## The part ##\lambda \cdot \mathbb{1}## is within ##\mathbb{K}\cdot \mathbb{1}\cong \mathbb{K}## and considered zero. The isomorphism maps
$$
\mathfrak{gl}(2)/\mathbb{K}\ni X+\mathbb{K} = \begin{pmatrix}17&-3\\11&-1\end{pmatrix}+\mathbb{K}\cdot \mathbb{1}\longmapsto
\begin{pmatrix}9&-3\\11&-9\end{pmatrix}=\bar X \in \mathfrak{sl}(2)
$$
We extracted ##\begin{pmatrix}8&0\\0&8\end{pmatrix}## from ##X## and pushed it into our new zero ##\begin{pmatrix}8&0\\0&8\end{pmatrix}\in \bar 0=0+\mathbb{K}\cdot \mathbb{1}## so only ##\bar X \in \mathfrak{sl}(2)## was left. In short:

A matrix from ##\mathfrak{gl}(V)=\mathfrak{gl}(n)## modulo its center ##Z(\mathfrak{gl}(n))=\mathbb{K}\cdot \mathbb{1}\cong \mathbb{K}## is in ##\mathfrak{sl}(V)=\mathfrak{sl}(n).##B.) ##\mathfrak{gl}(2) / \mathfrak{sl}(2) \cong \mathbb{K}##

This is the same as before with the roles of ##\mathbb{K}\cdot \mathbb{1}## and ##\mathfrak{sl}(2)## exchanged. This time we keep the diagonal matrix ##\begin{pmatrix}8&0\\0&8\end{pmatrix}## and push the remaining part ##\begin{pmatrix}9&-3\\11&-9\end{pmatrix}## into the new zero here, which is ##\mathfrak{sl}(2)##. It is not the center of ##\mathfrak{gl}(2)## but the derived algebra ##[\mathfrak{gl}(2)\, , \,\mathfrak{gl}(2)]## which is also an ideal. Hence this isomorphism maps
$$
\mathfrak{gl}(2)/\mathfrak{sl}(2) \ni X+\mathfrak{sl}(2) = \begin{pmatrix}17&-3\\11&-1\end{pmatrix}+\mathfrak{sl}(2)\longmapsto
\begin{pmatrix}8&0\\0&8\end{pmatrix}=\lambda \cdot\mathbb{1} \in \mathbb{K}\cdot \mathbb{1}\cong \mathbb{K}
$$
We extracted ##\begin{pmatrix}9&-3\\11&-9\end{pmatrix}## from ##X## and #pushed it into our new zero ##\begin{pmatrix}9&-3\\11&-9\end{pmatrix}\in \bar 0=0+\mathfrak{sl}(2)## so only ##\lambda \cdot \mathbb{1} \in \mathbb{K}\cdot \mathbb{1}\cong \mathbb{K}## was left. In short:

A matrix from ##\mathfrak{gl}(V)=\mathfrak{gl}(n)## modulo its derived algebra ##[\mathfrak{gl}(n)),\mathfrak{gl}(n))]=\mathfrak{sl}(V)=\mathfrak{sl}(n))## is in ##\mathbb{K}\cdot \mathbb{1}\cong \mathbb{K}.##

Note: This is an important concept, and it can easily be practiced with integers. Try to figure out why ##\mathbb{Z}/5\mathbb{Z}=\mathbb{Z}_5## is a field, whereas ##\mathbb{Z}/4\mathbb{Z}=\mathbb{Z}_4## is not. With ##\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}_n## we mean the set of remainders by division by ##n##. If we have an arbitrary number ##z\in \mathbb{Z}## then we can write it as ##z=q\cdot n+r## with a remainder ##r\in \{0,1,2,\ldots,n-1\}.## Those remainders are the new elements in ##\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}_n##. The elements are only unique up to are multiple of ##n.## Say ##n=5## and ##z=7.## Then ##7=1\cdot 5 +2## and ##7## is represented by ##2##. But nobody prevents us from writing ##7=11^2\cdot 5 -598## and ##7## is now represented by ##-598.## However, ##2-(-598)## is a multiple of ##5## and thus regarded as the same number in the quotient ring ##\mathbb{Z}/5\mathbb{Z}=\mathbb{Z}_5.## The elements ##0,1,2,3,4## represent the sets ##0+5\mathbb{Z},1+5\mathbb{Z},2+5\mathbb{Z},3+5\mathbb{Z},4+5\mathbb{Z}## and ##2\in 2+5\mathbb{Z}## as is ##-598 \in 2+5\mathbb{Z}.##

If you get used to this modular arithmetic then the concept of quotients will be much easier to understand.
 
  • Like
Likes HDB1
  • #9
Thank you so much,@fresh_42 , :heart: :heart:
I am so sorry for bothering you,

please, I have a question, in ##\mathfrak{s l}(V)=\mathfrak{s l}(n))##, especially: when ##n=2## how we get the first direction, I just focus in ##\mathfrak{s l}(2))## but I did not use any example in ##\mathfrak{s l}(V)##, I know it a map from ##V## to ##V##, but how it equals ##\mathfrak{s l}(n))##,
we have to compute the trace of this map, but please, if yes, do you have an example of it?

thanks in advance,
 
  • #10
HDB1 said:
Thank you so much,@fresh_42 , :heart: :heart:
I am so sorry for bothering you,

please, I have a question, in ##\mathfrak{s l}(V)=\mathfrak{s l}(n))##, especially: when ##n=2## how we get the first direction, I just focus in ##\mathfrak{s l}(2))## but I did not use any example in ##\mathfrak{s l}(V)##, I know it a map from ##V## to ##V##, but how it equals ##\mathfrak{s l}(n))##,
we have to compute the trace of this map, but please, if yes, do you have an example of it?

thanks in advance,
I only mentioned ##\mathfrak{sl}(V)## to say that it is the same as ##\mathfrak{sl}(\dim V)=\mathfrak{sl}(n).## ##n=2## is ok, but all of the above works for any value of ##n \geq 1.##

What do you mean by the first direction? We start with an arbitrary matrix ##X=\begin{pmatrix}a&b\\c&d\end{pmatrix}## and consider it modulo ##\mathfrak{sl}(2),## i.e. modulo trace zero matrices. We thus can write
\begin{align*}
\mathfrak{gl}(2)\ni \begin{pmatrix}a&b\\c&d\end{pmatrix}=\begin{pmatrix}a&b\\c&-a\end{pmatrix}+ \begin{pmatrix}\begin{pmatrix}0&0\\0&d+a\end{pmatrix}\end{pmatrix}\in \mathfrak{sl}(2)+\mathbb{K}
\end{align*}
That would identify elements of ##\mathbb{K}## with ##\begin{pmatrix}0&0\\0&\lambda \end{pmatrix}.## This is possible, but it is better to identify the elements of ##\mathbb{K}## with ##\begin{pmatrix}\lambda &0\\0&\lambda \end{pmatrix}## since this is an ideal in ##\mathfrak{gl}(2),## the center.

So I looked for the equation
\begin{align*}
\begin{pmatrix}a&b\\c&d\end{pmatrix}&= \begin{pmatrix}\lambda &0\\0&\lambda \end{pmatrix} +\begin{pmatrix}a'&b'\\c'&-a'\end{pmatrix}
\end{align*}
This means I have ##b'=b\, , \,c'=c## and ##a=\lambda +a'\, , \,d=\lambda -a'.## Its solutions are ##\lambda =\dfrac{a-d}{2}\, , \,a'=a-\lambda =\dfrac{a+d}{2}## and thus
\begin{align*}
\begin{pmatrix}a&b\\c&d\end{pmatrix}&= \begin{pmatrix}\dfrac{a-d}{2} &0\\0&\dfrac{a-d}{2} \end{pmatrix} +\begin{pmatrix}a-\dfrac{a-d}{2}&b\\c&-a+\dfrac{a-d}{2}\end{pmatrix}\\
&=\underbrace{\begin{pmatrix}\dfrac{a-d}{2} &0\\0&\dfrac{a-d}{2} \end{pmatrix}}_{\in Z(\mathfrak{gl}(2))}+\underbrace{\begin{pmatrix}\dfrac{a+d}{2}&c\\b&-\dfrac{a+d}{2}\end{pmatrix}}_{\in [\mathfrak{gl}(2),\mathfrak{gl}(2)]=\mathfrak{sl}(2)}
\end{align*}
 
  • #11
Thank you so much, @fresh_42 ,

I mean, when we want to talk about ##\operatorname{sl}(V)##, as a subalgebra of ##\text { End } V##,
then how we will know the basis? if we do not want to use matrices., and the dimension of ##V## equals 2.

I do not know whether I write my question properly, or not.

Thanks a lot, :heart: :heart: :heart:
 
  • #12
HDB1 said:
Thank you so much, @fresh_42 ,

I mean, when we want to talk about ##\operatorname{sl}(V)##, as a subalgebra of ##\text { End } V##,
then how we will know the basis? if we do not want to use matrices., and the dimension of ##V## equals 2.

I do not know whether I write my question properly, or not.

Thanks a lot, :heart: :heart: :heart:

Just for clarification. If ##\dim V=n## and ##\mathbb{M}## are the matrix spaces then
\begin{align*}
\mathfrak{gl}(V)&=\mathfrak{gl}(n)=\operatorname{End}(V)=\mathbb{M}(n,\mathbb{K})=\mathbb{M}(n)\\
\mathfrak{sl}(V)&=\mathfrak{sl}(n)=[\mathfrak{gl}(n),\mathfrak{gl}(n)]=\{X\in \mathfrak{gl}(n)\,|\,\operatorname{trace}(X)=0\}
\end{align*}
If you do not care about matrices, then simple work with elements ##\alpha E+\beta H+\gamma F## and the multiplications ##[H,E]=-[E,H]=2E\, , \,[H,F]=-[F,H]=-2F\, , \,[E,F]=-[F,E]=H.## This is all you need for the (only) three-dimensional, simple Lie algebra, the ##\mathfrak{sl}(2).##

We commonly use as standard matrices
$$
E=\begin{pmatrix}0&1\\0&0\end{pmatrix}\, , \,F=\begin{pmatrix}0&0\\1&0\end{pmatrix}\, , \,H=\begin{pmatrix}1&0\\0&-1\end{pmatrix}
$$

The ##\mathfrak{sl}(V)## and all other classical Lie algebras are more or less defined as matrix algebras. Once you have a basis and the multiplication table, you don't need matrices anymore, but it was matrices where all those came from.
 
  • Like
Likes HDB1
  • #13
  • Like
Likes fresh_42
  • #14
fresh_42 said:
A matrix from ##\mathfrak{gl}(V)=\mathfrak{gl}(n)## modulo its derived algebra ##[\mathfrak{gl}(n)),\mathfrak{gl}(n))]=\mathfrak{sl}(V)=\mathfrak{sl}(n))## is in ##\mathbb{K}\cdot \mathbb{1}\cong \mathbb{K}.##
Please, @fresh_42 , bear with me, here what will be the equivalncve classes of ##\mathfrak{g l}(2) / \mathfrak{s l}(2) \cong \mathbb{K}##?
I mean as in ##{0+3Z,1+3Z, 2+3Z}## in ##\mathbb{Z}_3##.

Thank in advance, :heart:
 
  • #15
HDB1 said:
Please, @fresh_42 , bear with me, here what will be the equivalncve classes of ##\mathfrak{g l}(2) / \mathfrak{s l}(2) \cong \mathbb{K}##?
I mean as in ##{0+3Z,1+3Z, 2+3Z}## in ##\mathbb{Z}_3##.

Thank in advance, :heart:
It will be ##\begin{pmatrix}0&0\\0&0\end{pmatrix}+\mathfrak{sl}(2)=\mathfrak{sl}(2)## and ##\begin{pmatrix}1&0\\0&1\end{pmatrix}\cdot \mathbb{K}+\mathfrak{sl(2)}.## The field ##\mathbb{K}## means that we have all multiples of the identity in the representative of the non-zero equivalence class because - other than with numbers - we have entire vector spaces here.

The quotient is one-dimensional and therefore an abelian Lie algebra:
$$
\left[\mathfrak{gl}(2)/\mathfrak{sl}(2)\, , \,\mathfrak{gl}(2)/\mathfrak{sl}(2)\right]=[\mathbb{K}\, , \,\mathbb{K}]=\{0\}
$$
Edit: This can also be written as
$$
\left[\mathfrak{gl}(2)/\mathfrak{sl}(2)\, , \,\mathfrak{gl}(2)/\mathfrak{sl}(2)\right]=\left[\mathfrak{gl}(2)\, , \,\mathfrak{gl}(2)\right]/ \mathfrak{sl}(2)= [\mathfrak{sl}(2)\, , \,\mathfrak{sl}(2)]/\mathfrak{sl}(2)=\mathfrak{sl}(2)/\mathfrak{sl}(2)=\{0\}
$$
 
Last edited:
  • Love
Likes HDB1
  • #16

1. What is a quotient Lie algebra?

A quotient Lie algebra is a type of Lie algebra that is obtained by taking a quotient of a larger Lie algebra. This means that certain elements or subspaces of the larger Lie algebra are identified or collapsed together, resulting in a smaller Lie algebra with different properties.

2. How is a quotient Lie algebra different from a regular Lie algebra?

A quotient Lie algebra is different from a regular Lie algebra in that it has fewer elements and different structural properties. This is because certain elements or subspaces have been identified or collapsed together, changing the overall structure of the algebra.

3. What are some examples of quotient Lie algebras?

Some examples of quotient Lie algebras include the Heisenberg algebra, the Virasoro algebra, and the affine Kac-Moody algebra. These are all obtained by taking a quotient of a larger Lie algebra and have important applications in physics and mathematics.

4. How are quotient Lie algebras used in mathematics and science?

Quotient Lie algebras have many important applications in mathematics and science, particularly in the fields of algebra, geometry, and physics. They are used to study symmetries, transformations, and other structural properties of mathematical and physical systems.

5. What are some properties of quotient Lie algebras?

Some properties of quotient Lie algebras include being closed under the Lie bracket operation, having a basis of generators, and satisfying the Jacobi identity. They also have a well-defined quotient map that preserves the Lie bracket, making them useful tools for studying the structure of larger Lie algebras.

Similar threads

  • Linear and Abstract Algebra
Replies
19
Views
2K
  • Linear and Abstract Algebra
Replies
19
Views
1K
  • Linear and Abstract Algebra
Replies
5
Views
1K
  • Linear and Abstract Algebra
Replies
4
Views
1K
  • Linear and Abstract Algebra
Replies
2
Views
1K
  • Linear and Abstract Algebra
Replies
4
Views
889
  • Linear and Abstract Algebra
Replies
4
Views
943
  • Linear and Abstract Algebra
Replies
8
Views
2K
  • Linear and Abstract Algebra
Replies
1
Views
1K
  • Linear and Abstract Algebra
Replies
3
Views
2K
Back
Top